Совет 1: Как вычислить градус угла

Вычислить градус угла можно, применив теорему Пифагора и использовав «Четырёхзначные математические таблицы» Брадиса. Такой расчет возможен для нахождения острых углов треугольника. Как это сделать?
Инструкция
1
Чтобы вычислить величину острого угла в прямоугольном треугольнике, нужно знать значения величин всех его сторон. Примите необходимые обозначения для элементов прямоугольного треугольника:

c – гипотенуза;
a,b – катеты;
A – Острый угол, который находится напротив катета b;
B – Острый угол, который находится напротив катета a.
2
Посчитайте длину той стороны треугольника, которая неизвестна, применяя для этого теорему Пифагора. Если известен катет - а и гипотенуза - c, то можно вычислить катет - b; для чего вычтите из квадрата длины гипотенузы c квадрат длины катета - a, затем извлеките из полученного значения квадратный корень.
3
Аналогичным способом можно вычислить катет a, если известны гипотенуза c и катет - b, для этого из квадрата гипотенузы c вычтите квадрат катета - b. После этого из полученного результата извлеките корень квадратный. Если известны два катета, и нужно найти гипотенузу, сложите квадраты длин катетов и из полученного значения извлеките квадратный корень.
4
По формуле для тригонометрических функций вычислите синус угла A: sinA=a/c. Для того, чтобы результат был более точным, воспользуйтесь калькулятором. Полученное значение округлите до 4 знаков после десятичной запятой. Аналогично найдите синус угла B, для чего sinB=b/c.
5
Пользуясь «Четырехзначными математическими таблицами» Брадиса, найдите значения углов в градусах по известным значениям синусов этих углов. Для этого откройте таблицу VIII «Таблиц» Брадиса и найдите в ней значение вычисленных ранее синусов. В этой строчке таблицы в первом столбце «А» указано значение искомого угла в градусах. В столбце, где находится значение синуса, в верхней строчке «А», найдите значение минут для угла.

Совет 2: Как вычислить квадратный корень

Вычисление квадратных корней пугает некоторых школьников в первое время. Посмотрим, как же с ними нужно работать и на что обратить внимание. Также приведём их свойства.
Инструкция
1
Про использование калькулятора говорить не будем, хотя, безусловно, во многих случаях он просто необходим.

Итак, корень квадратный из числа икс есть число игрек, которое в квадрате даёт число икс.

Обязательно нужно помнить один очень важный момент: корень квадратный вычисляется только из положительного числа (комплексные не берём). Почему? Смотрите определение, написанное выше. Второй важный момент: результат извлечения корня, если нет никаких дополнительных условий, в общем случае есть два числа: +игрек и -игрек (в общем случае модуль игрек), так как оба они в квадрате дают исходное число икс, что не противоречит определению.

Корень из нуля - ноль.
Как вычислить квадратный корень
2
Теперь то, что касается конкретных примеров. Для небольших чисел квадраты (а значит и корни - как обратная операция) лучше всего запомнить, как таблицу умножения. Я говорю о числах от 1 до 20. Это будет экономить ваше время и помогать в оценке возможного значения искомого корня. Так, например, зная что корень из 144 = 12, а корень из 13 = 169, можно оценить, что корень из числа 155 находится между 12 и 13. Аналогичные оценки можно применять и для более крупных чисел, их отличие будет лишь в сложности и времени выполнения этих операций.

Также есть другой простой интересный способ. Покажем его на примере.

Пусть есть число 16. Узнаем, какое число является его корнем. Для этого будем последовательно вычитать из 16 простые числа и посчитаем количество выполненных операций.

Итак, 16-1=15 (1), 15-3=12 (2), 12-5=7 (3), 7-7=0 (4). 4 операции – искомое число 4. Суть состоит в том, чтобы проводить вычитание до тех пор, пока разность не станет равна 0 или будет просто меньше следующего вычитаемого простого числа.

Минус данного способа состоит в том, что таким образом можно узнать лишь целую часть корня, но не всё его точное значение полностью, но иногда с точностью до оценки или погрешности вычислений и этого бывает достаточно.
Как вычислить квадратный корень
3
Некоторые основные свойства: корень из суммы (разности) не равен сумме (разности) корней, а вот корень из произведения (частного) равен произведению (частному) корней.

Корень в квадрате из числа икс есть само число икс.
Видео по теме
Источники:
  • как посчитать квадратный корень

Совет 3: Как вычислить угол в треугольнике

Из школьного курса планиметрии известно определение: треугольником называется геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, которые попарно соединяют эти точки. Точки называют вершинами, а отрезки – сторонами треугольника. Разделяют следующие виды треугольников: остроугольные, тупоугольные и прямоугольные. Также треугольники классифицируют по сторонам: равнобедренные, равносторонние и разносторонние.
В зависимости от вида треугольника, существует несколько способов определения его углов, иногда достаточно знать лишь форму треугольника.
Инструкция
1
Треугольник называется прямоугольным, если у него есть прямой угол. При измерении его углов можно воспользоваться тригонометрическими вычислениями.

В данном треугольнике угол ∠С = 90º, как прямой, зная длины сторон треугольника, углы ∠A и ∠B вычисляются по формулам: cos∠A = AC/AB, cos∠B = BC/AB. Градусные меры углов можно узнать, обратившись к таблице косинусов.
Как вычислить угол в треугольнике
2
Треугольник называется равносторонним, если у него все стороны равны.

В равностороннем треугольнике все углы равны 60º.
Как вычислить угол в треугольнике
3
В общем случае, для нахождения углов в произвольном треугольнике можно воспользоваться теоремой косинусов

cos∠α = (b² + c² - a²) / 2 • b • c

Градусную меру угла можно узнать, обратившись к таблице косинусов.
Как вычислить угол в треугольнике
4
Треугольник называется равнобедренным, если у него две стороны равны, третья сторона при этом называется основанием треугольника.

В равнобедренном треугольнике углы при основании равны, т.е. ∠A = ∠B. Одним из свойств треугольника является то, что сумма его углов всегда равна 180º, поэтому вычислив по теореме косинусов угол ∠С, углы ∠A и ∠B можно вычислить так: ∠A = ∠B = (180º - ∠С)/2
Как вычислить угол в треугольнике
Видео по теме
Источники:
  • расчёт угла треугольника

Совет 4: Как вычислять синус угла

Когда приходится иметь дело с решением прикладных задач, включающих тригонометрические функции, наиболее часто требуется вычислить значения синуса или косинуса заданного угла.
Инструкция
1
Первый вариант - классический, с использованием бумаги, транспортира и карандаша (или ручки).По определению синус угла равен соотношению противолежащего катета к гипотенузе прямоугольного треугольника. То есть, чтобы вычислить значение, вам надо при помощи транспортира построить прямоугольный треугольник, один из углов которого равен тому, синус которого вас интересует. Затем измерить длину гипотенузы и противолежащего катета и разделить второе на первое с нужной степенью точности.
2
Второй вариант - школьный. Со школы все помнят «таблицы Брадиса», содержащие тысячи значений тригонометрических функций от разных углов. Можно поискать как бумажное издание, так и его электронный аналог в формате pdf - они есть в сети. Найдя таблицы, найти значение синуса нужного угла не составит труда.
3
Третий вариант - оптимальный. Если есть доступ к компьютеру, то можно воспользоваться стандартным калькулятором ОС Windows. Его следует переключить в расширенный режим. Для этого в разделе «Вид» меню выберите пункт «Инженерный». Вид калькулятора изменится - в нем появятся, в частности, кнопки для вычисления тригонометрических функций.Теперь введите значение угла, синус которого вам требуется вычислить. Можно сделать это как с клавиатуры, так и щелкая курсором мыши нужные клавиши калькулятора. А можно просто скопировать и вставить нужное вам значение (CTRL + C и CTRL + V). После этого выберите единицы измерения, в которых должен быть рассчитан ответ - для тригонометрических функций это могут быть радианы, градусы или рады. Делается это выбором одного из трех значений переключателя, расположенного ниже поля ввода вычисляемого значения. Теперь, нажав кнопку с надписью "sin", получите ответ на свой вопрос.
4
Четвертый вариант - самый современный. В эру интернета в сети существуют ресурсы, предлагающие решить чуть ли не каждую возникающую в жизни проблему. Он-лайн калькуляторы тригонометрических функций с удобным интерфейсом, более продвинутыми функциональными возможностями найти совсем не сложно. Лучшие из них предлагают вычислить не только значения отдельной функции, но и достаточно сложных выражений из нескольких функций.

Совет 5: Как посчитать синус угла

Тригонометрические функции — это элементарные функции, которые возникли при изучении прямоугольных треугольников. Они выражают зависимость сторон этих фигур от острых углов и гипотенузы. Синус является прямой тригонометрической функцией.
Инструкция
1
Если рассматриваемый треугольник является прямоугольным, то используйте базовое определение тригонометрической функции синуса для острых углов, который считается как отношение катета, противоположного данному острому углу, к гипотенузе прямоугольного треугольника. Помните следующее - угол, лежащий против гипотенузы, всегда равен 90°. А синус угла в 90° всегда равен единице.
2
Если рассматриваемый треугольник является произвольным, то для того, чтобы найти значение синуса угла а, посчитайте значение косинуса этого угла. Для этого используйте теорему косинусов, согласно которой квадрат длинны одной стороны должен быть равен квадрату длины второй стороны плюс квадрат длины третьей стороны минус удвоенное произведение второй и третьей сторон, умноженное на косинус угла между второй и третьей стороной. Для треугольника KMN KM2=NM2+ NK2-2NM*NK*cosλ. Отсюда посчитайте cosλ=KM2-NM2-NK22NM*NK И по формуле sin2 λ=1-cos2 λ вычислите sinλ=1-cos2λ
3
Еще один способ нахождения синуса угла заключается в использовании двух разных формул площади треугольника. Одна формула - в которой задействованы только длины сторон треугольника (формула Герона). У вас должны быть известны длины всех сторон треугольника. Предположим, стороны равны m, n, k Тогда используйте следующую формулу Герона:S=p△*p△-n*p△-k*(p△)-m) , где полупериметр треугольника: n+k+m2=p△А вторая формула – это произведение длин двух сторон и значения синуса угла между этими сторонами: S (△) = n* k* sinµ.Т.к. значение S одинаково, приравняйте правые части формул:p△*p△-n*p△-k*(p△-m)= n*k* sinµ.И из этой формулы найдите синус угла a, который находится напротив стороны С:sin µ=p△*p△-n*p△-k*(p△-m)n* kСинусы остальных углов можно найти по формулам, аналогичным последней.
Видео по теме

Совет 6: Как вычислить функцию

Функция определяет зависимость между несколькими величинами таким образом, что заданным значениям ее аргументов ставятся в соответствие значения других величин (значений функции). Вычисление функции заключается в определении области ее возрастания или убывания, поиске значений на каком-либо интервале или в заданной точке, в построении графика функции, нахождении ее экстремумов и других параметров.
Инструкция
1
Определите признаки возрастания или убывания заданной функции. Для линейной функции вида f(x) = k*а+b имеет значение знак коэффициента при аргументе х. Если k>0, функция возрастает, при k
2
Найдите значения функции в заданном интервале [n, m]. Для этого подставьте граничные значения в качестве аргумента х в выражение функции. Произведите вычисления f (х), запишите результаты. Обычно поиск значений выполняется для построения графика функции. Однако двух пограничных точек для этого недостаточно. На указанном интервале задайте шаг в 1 или 2 единицы, в зависимости от промежутка, прибавляйте значение х на величину шага и каждый раз высчитывайте соответствующее значение функции. Оформите результаты в табличном виде, где одной строкой будет аргумент х, второй – значения функции.
3
Постройте график функции на координатной плоскости ОХУ. Здесь горизонтальная ОХ является осью абсцисс, на которой отображаются все аргументы, вертикальная ОУ – ось ординат со значениями функции. Отложите на осях все полученные данные х и у (f(x)). Поставьте точки функции на пересечении соответствующих значений х и у. Плавной линией последовательно соедините точки и подпишите рядом с графиком выражение функции.
4
Найдите экстремумы функции. Экстремумами называются максимальные или минимальные значения функции f(x) на определенном интервале, а аргумент х при этом – точкой максимума или минимума соответственно. Используйте необходимое условие экстремума: если аргумент х является точкой экстремума функции f(x), то дифференциал данной функции f'(x) равен нулю или не существует.
5
Дифференцируйте заданную функцию. Приравняйте полученное выражение к нулю и найдите аргументы, при которых равенство истинно. Подставьте поочередно каждое из полученных значений х в уравнение дифференцированной функции, вычислите выражение и определите его знак. Если производная f'(x) меняет знак с плюса на минус, найденная точка является точкой максимума, при обратном результате – определена точка минимума. Найденные аргументы хmin и xmax подставьте в первоначальную функцию f(x) и вычислите ее значения в обоих случаях. Вы найдете соответствующие экстремумы функции.
Видео по теме

Совет 7: Как вычислить сторону квадрата

Квадратом можно назвать ромб с одинаковыми длинами сторон и величинами углов. У этой плоской фигуры четыре стороны, что определяет такое же число вершин и углов. Квадрат относится к «правильным» геометрическим фигурам, что значительно упрощает формулы расчета длин его сторон по косвенным данным.
Инструкция
1
Если из условий задачи известна площадь квадрата (S), то длину его стороны (a) определите вычислением корня из этой величины a=√S. Например, если площадь составляет 121 см², то длина стороны будет равна √121=11 см.
2
По известной длине диагонали квадрата (l) длину его стороны (a) можно вычислить с использованием теоремы Пифагора. Стороны этой фигуры являются катетами в прямоугольном треугольнике, образуемом ими с диагональю - гипотенузой. Делите длину гипотенузы на квадратный корень из двойки: a=l/√2. Это вытекает из того, что сумма возведенных в квадрат длин катетов, согласно теореме, должна быть равна квадрату длины гипотенузы.
3
Зная радиус окружности (r), вписанной в квадрат, вычислить длину его стороны очень просто. Размеры сторон совпадают с диаметром такой окружности, поэтому просто увеличьте известное значение вдвое: a=2*r.
4
Использовать в вычислениях длины стороны квадрата радиус описанной около него окружности (R) немного менее удобно - придется извлекать корень. Удвоенное значение этой исходной величины - диаметр - совпадает с длиной диагонали четырехугольника. Подставьте это выражение в формулу из второго шага и получите такое равенство: a=2*R/√2.
5
Если квадрат в условиях задачи задан координатами своих вершин, для нахождения длины стороны достаточно использовать данные только о двух из них. Длину отрезка по его координатам можно определить с использованием той же теоремы Пифагора. Например, пусть даны координаты двух вершин квадрата в двухмерной прямоугольной системе: A(X₁,Y₁) и B(X₂,Y₂). Тогда расстояние между ними будет равно √((X₁-X₂)²+(Y₁-Y₂)²). Если это смежные вершины, найденное расстояние и будет длиной стороны квадрата: a=√((X₁-X₂)²+(Y₁-Y₂)²). Для противоположных вершин этой формулой определится длина диагонали, а значит, ее надо разделить на корень из двойки: a=√((X₁-X₂)²+(Y₁-Y₂)²)/√2.
Видео по теме
Видео по теме
Обратите внимание
Таблицы Брадиса содержат значения, ограниченные четырьмя знаками после десятичной запятой, поэтому округлите полученные в ходе вычислений значения до этого предела.
Полезный совет
Для определения угла после вычисления значения его синуса можно воспользоваться калькулятором, имеющим тригонометрические функции.
Источники:
  • вычислить градусы
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше