Совет 1: Как найти катет в прямоугольном треугольнике

Прежде чем мы рассмотрим различные способы нахождения катета в прямоугольном треугольнике, примем некоторые обозначения. Катетом называют прилежащую к прямому углу сторону прямоугольного треугольника. Длины катетов условно обозначим a и b. Углы, противолежащие катетам a и b обозначим соответственно через A и B. Гипотенуза, по определению, это сторона прямоугольного треугольника, которая противоположна прямому углу (при этом с другими сторонами треугольника гипотенуза образует острые углы). Длину гипотенузы обозначим через с.
Инструкция
Углы, противолежащие катетам a и b обозначим соответственно через A и B. Гипотенуза, по определению, это сторона прямоугольного треугольника, которая противоположна прямому углу (при этом с другими сторонами треугольника гипотенуза образует острые углы). Длину гипотенузы обозначим через с.
Как найти катет в прямоугольном треугольнике
Вам понадобится:
Калькулятор.
Как найти катет в прямоугольном треугольнике
Проверьте, какому из перечисленных случаев соответствует условие вашей задачи и в зависимости от этого руководствуйтесь соответствующим пунктом. Выясните, какие величины в рассматриваемом треугольнике вам известны.
Как найти катет в прямоугольном треугольнике
Воспользуйтесь для вычисления катета следующим выражением: a=sqrt(c^2-b^2), в том случае, если вам известны величины гипотенузы и другого катета. Это выражение получается из теоремы Пифагора, которая гласит, что квадрат гипотенузы треугольника равен сумме квадратов катетов. Оператор sqrt обозначает извлечение квадратного корня. Знак "^2" означает возведение во вторую степень.
Как найти катет в прямоугольном треугольнике
Используйте формулу a=c*sinA, если вам известна гипотенуза (c) и угол, противолежащий искомому катету (этот угол мы обозначили, как A).
Выражение a=c*cosB используйте для нахождения катета, если вам известна гипотенуза (c) и угол, прилежащий искомому катету (этот угол мы обозначили как B).
Вычислите катет по формуле a=b*tgA в случае, когда задан катет b и угол, противолежащий искомому катету (этот угол мы условились обозначать A).
Как найти катет в прямоугольном треугольнике
Обратите внимание:
Если же в вашей задаче катет не находится ни одним из описанных способов, скорее всего, её можно свести к какому-то из них.
Как найти катет в прямоугольном треугольнике
Полезные советы:
Все эти выражения получаются из общеизвестных определений тригонометрических функций, поэтому, даже если вы забыли какое-то из них, вы всегда сможете путём несложных операций его быстро вывести. Также, полезно знать значения тригонометрических функций для наиболее типичных углов 30, 45, 60, 90, 180 градусов.
Как найти катет в прямоугольном треугольнике

Совет 2: Как найти сторону квадратного треугольника

Квадратный треугольник более точно называется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры подробно рассматриваются в математической дисциплине тригонометрии.
Вам понадобится
  • - лист бумаги;
  • - ручка;
  • - таблицы Брадиса;
  • - калькулятор.
Инструкция
1
Найдите сторону прямоугольного треугольника с помощью теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза треугольника, a и b – его катеты. Чтобы применить это уравнение, нужно знать длину любых двух сторон прямоугольного треугольника.
2
Если по условиям заданы размеры катетов, отыщите длину гипотенузы. Для этого с помощью калькулятора извлеките квадратный корень из суммы катетов, каждый из которых предварительно возведите в квадрат.
3
Вычислите длину одного из катетов, если известны размеры гипотенузы и другого катета. При помощи калькулятора извлеките квадратный корень из разности гипотенузы в квадрате и известного катета, также возведенного в квадрат.
4
Если в задаче заданы гипотенуза и один из прилежащих к ней острых углов, используйте таблицы Брадиса. В них приведены значения тригонометрических функций для большого числа углов. Воспользуйтесь калькулятором с функциями синуса и косинуса, а также теоремами тригонометрии, которые описывают соотношения между сторонами и углами прямоугольного треугольника.
5
Найдите катеты при помощи основных тригонометрических функций: a = c*sin α, b = c*cos α, где а – катет, противолежащий к углу α, b – катет, прилежащий к углу α. Подобным образом посчитайте размер сторон треугольника, если заданы гипотенуза и другой острый угол: b = c*sin β, a = c*cos β, где b – катет, противолежащий к углу β, а – катет, прилежащий к углу β.
6
В случае, когда известен катет a и прилежащий к нему острый угол β, не забывайте, что в прямоугольном треугольнике сумма острых углов всегда равна 90°: α + β = 90°. Отыщите значение угла, противолежащего к катету а: α = 90° – β. Или воспользуйтесь тригонометрическими формулами приведения: sin α = sin (90° – β) = cos β; tg α = tg (90° – β) = ctg β = 1/tg β.
7
Если известен катет а и противолежащий к нему острый угол α, при помощи таблиц Брадиса, калькулятора и тригонометрических функций вычислите гипотенузу по формуле: c=a*sin α, катет: b=a*tg α.
Видео по теме
Источники:
  • Как найти стороны прямоугольного треугольника по катету и острому углу?

Совет 3: Как найти острый угол в прямоугольном треугольнике

Прямоугольный треугольник, вероятно, - одна из самых известных, с исторической точки зрения, геометрических фигур. Пифагоровым "штанам" конкуренцию может составить лишь "Эврика!" Архимеда.
Вам понадобится
  • - чертеж треугольника;
  • - линейка;
  • - транспортир.
Инструкция
1
Как правило, вершины углов треугольника обозначаются заглавными латинскими буквами (A, B, C), а противоположные им стороны маленькими латинскими буквами (a, b, c) или по названиям вершин треугольника, образующих эту сторону (AC, BC, AB).
2
Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) всегда будет 90 градусов, а остальные острыми, т.е. меньше 90 градусов каждый. Чтобы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с помощью линейки стороны треугольника и определите наибольшую. Она называется гипотенуза (AB) и располагается напротив прямого угла (C). Остальные две стороны образуют прямой угол и называются катетами (AC, BC).
3
Когда определили, какой угол является острым, вы можете либо измерить величину угла при помощи транспортира, либо рассчитать с помощью математических формул.
4
Чтобы определить величину угла с помощью транспортира, совместите его вершину (обозначим ее буквой А) с специальной отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Отметьте на полукруглой части транспортира точку, через которую проходит гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла нужно выбирать меньшую, для тупого - большую.
5
Величину угла можно рассчитать, сделав несложные математические вычисления. Вам понадобится знание основ тригонометрии. Если известны длина гипотенузы AB и катета ВС, вычислите значение синуса угла А: sin (A) = BC / AB.
6
Полученное значение найдите в справочных таблицах Брадиса и определите какому углу соответствует полученное числовое значение. Этим методом пользовались наши бабушки.
7
В наше время достаточно взять калькулятор с функцией вычисления тригонометрических формул. Например, встроенный калькулятор Windows. Запустите приложение "Калькулятор", в пункте меню "Вид" выберете пункт "Инженерный". Вычислите синус искомого угла, например, sin (A) = BC/AB = 2/4 = 0.5
8
Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, затем кликните по кнопке расчета функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится следующая надпись: asind (0.5) = 30. Т.е. значение искомого угла - 30 градусов.
Источники:
  • Таблицы Брадиса (синусы, косинусы)

Совет 4: Как найти длину гипотенузы в прямоугольном треугольнике

Гипотенузой называют самую длинную из сторон в прямоугольном треугольнике, поэтому не удивительно, что с греческого языка это слово переводится как «натянутая». Эта сторона всегда лежит напротив угла в 90°, а стороны, образующие этот угол называют катетами. Зная длины этих сторон и величины острых углов в разных комбинациях этих значений можно вычислить и длину гипотенузы.
Инструкция
1
Если известны длины обоих катетов треугольника (А и В), то используйте для нахождения длины гипотенузы (С) самый, пожалуй, известный на нашей планете математический постулат - теорему Пифагора. Он гласит, что квадрат длины гипотенузы равен сумме квадратов длин катетов, из чего вытекает, что вам следует вычислить квадратный корень из суммы возведенных в квадрат длин двух известных сторон: С=√(А²+В²). Например, если длина одного катета равна 15 сантиметрам, а другого - 10 сантиметрам, то длина гипотенузы составит приблизительно 18,0277564 сантиметра, так как √(15²+10²)=√(225+100)= √325≈18,0277564.
2
Если известна длина только одного из катетов (А) в прямоугольном треугольнике, а также величина угла, лежащего напротив него (α), то длину гипотенузы (С) можно определить с помощью одной из тригонометрических функций - синуса. Для этого разделите длину известной стороны на синус известного угла: С=А/sin(α). Например, если длина одного из катетов равна 15 сантиметрам, а величина угла в противоположной ему вершине треугольника составляет 30°, то длина гипотенузы будет равна 30 сантиметрам, так как 15/sin(30°)=15/0,5=30.
3
Если в прямоугольном треугольнике известна величина одного из острых углов (α) и длина прилегающего к нему катета (В), то для вычисления длины гипотенузы (С) можно использовать другую тригонометрическую функцию - косинус. Вам следует разделить длину известного катета на косинус известного угла: С=В/ cos(α). Например, если длина этого катета равна 15 сантиметрам, а величина острого угла, к нему прилегающего, составляет 30°, то длина гипотенузы составит приблизительно 17,3205081 сантиметров, так как 15/cos(30°)=15/(0,5*√3)=30/√3≈17,3205081.
Видео по теме
Источники:
  • «Пособие по математике для поступающих в вузы», под ред. Г.Н. Яковлева, 1982
  • катет прямоугольного треугольника
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500