Совет 1: Как найти катет и гипотенузу

Катетом называется одна из сторон прямоугольного треугольника, которая прилегает к прямому углу.Гипотенуза - это сторона прямоугольного треугольника, которая расположена напротив прямого угла. Существуют несколько способов того, как найти их размеры.
Прямоугольный треугольник
Вам понадобится
  • - Знание двух из трех сторон прямоугольного треугольника;
  • - Знание углов треугольника.
Инструкция
1
Способ 1. Использование теоремы Пифагора. Теорема гласит: квадрат гипотенузы равен сумме квадратов катетов. Отсюда следует, что любую из сторон прямоугольного треугольника можно вычислить, зная две другие его стороны (рис.2)
рис.2
2
Способ 2. Вытекает из того, что медиана, проведенная из прямого угла к гипотенузе, образует между собой 3 подобных треугольника (рис. 3). На этом рисунке подобными являются треугольники ABC, BCD и ACD.
рис.3
Видео по теме
Обратите внимание
При расчете сторон прямоугольного треугольника может сыграть знание его признаков:
1) Если катет прямого угла лежит напротив угла в 30 градусов, то он равен половине гипотенузы;
2) Гипотенуза всегда длиннее любого из катетов;
3) Если вокруг прямоугольного треугольника описана окружность, то ее центр должен лежать в середине гипотенузы.

Совет 2 : Как вычислить катет

Под катетом подразумевается одна из сторон прямоугольного треугольника, которая вместе с другим катетом образует прямой угол. Если у треугольника нет прямого угла, то и катетов в нем тоже не будет. Для того, чтобы вычислить катет, можно прибегнуть к нескольким способам.
Прямоугольный треугольник. h - гипотенуза, C1 и C2 - катеты
Инструкция
1
Следствие из теоремы Пифагора.
Сама теорема формульно выражается так:
c? = a? + b? (квадрат гипотенузы равен сумме квадратов катетов).
Зная это, длины катетов a и b можно вычислить так:
a = v(c? - b?);
b = v(c? - a?).
2
Согласно ряду тригонометрических формул и законов, длины катетов а и b можно будет вычислить, зная углы и две другие стороны прямоугольного треугольника:
a = c*cos?;
b = c*cos?;
a = c*sin?;
b = c*sin?;
a = b*tan?;
b = a*tan?;
Прямоугольный треугольник с катетами a и b, гипотенузой c и углами ? и ?
Видео по теме

Совет 3 : Как найти прилежащий катет

Слово «катет» происходит от греческих слов «перпендикуляр» или «отвесный» - это объясняет, почему именно так назвали обе стороны прямоугольного треугольника, составляющие его девяностоградусный угол. Найти длину любого из катетов нетрудно, если известна величина прилегающего к нему угла и еще какой-либо из параметров, так как в этом случае фактически станут известны величины всех трех углов.
Как найти прилежащий катет
Инструкция
1
Если кроме величины прилегающего угла (β) известна длина второго катета (b), то длину катета (a) можно определить как частное от деления длины известного катета на тангенс известного угла: a=b/tg(β). Это вытекает из определения этой тригонометрической функции. Можно обойтись без тангенса, если воспользоваться теоремой синусов. Из нее следует, что отношение длины искомой стороны к синусу противолежащего угла равно отношению длины известного катета к синусу известного угла. Противолежащий искомому катету острый угол можно выразить через известный угол как 180°-90°-β = 90°-β, так как сумма всех углов любого треугольника должна составлять 180°, а по определению прямоугольного треугольника один из его углов равен 90°. Значит, искомую длину катета можно вычислить по формуле a=sin(90°-β)∗b/sin(β).
2
Если известны величина прилегающего угла (β) и длина гипотенузы (c), то длину катета (a) можно вычислить как произведение длины гипотенузы на косинус известного угла: a=c∗cos(β). Это вытекает из определения косинуса, как тригонометрической функции. Но можно воспользоваться, как и в предыдущем шаге, теоремой синусов и тогда длина искомого катета будет равняться произведению синуса разницы между 90° и известным углом на отношение длины гипотенузы к синусу прямого угла. А поскольку синус 90° равен единице, то формулу можно записать так: a=sin(90°-β)∗c.
3
Практические вычисления можно производить, например, при помощи имеющегося в составе ОС Windows программного калькулятора. Для его запуска можно в главном меню на кнопке «Пуск» выбрать пункт «Выполнить», набрать команду calc и нажать кнопку «OK». В открывающемся по умолчанию простейшем варианте интерфейса этой программы тригонометрические функции не предусмотрены, поэтому после его запуска надо щелкнуть в меню раздел «Вид» и выбрать строку «Научный» или «Инженерный» (зависит от используемой версии операционной системы).
Видео по теме

Совет 4 : Как рассчитать катет

Катетами называют две короткие стороны прямоугольного треугольника, составляющие ту его вершину, величина которой равна 90°. Третью сторону в таком треугольнике называют гипотенузой. Все эти стороны и углы треугольника связаны между собой определенными соотношениями, которые позволяют вычислить длину катета, если известны несколько других параметров.
Как рассчитать катет
Инструкция
1
Используйте теорему Пифагора для вычисления длины катета (A), если известна длина двух других сторон (B и C) прямоугольного треугольника. Эта теорема утверждает, что сумма возведенных в квадрат длин катетов равна квадрату гипотенузы. Из этого вытекает, что длина каждого из катетов равна квадратному корню из разности квадратов длин гипотенузы и второго катета: A=√(C²-B²).
2
Воспользуйтесь определением прямой тригонометрической функции «синус» для острого угла, если известна величина угла (α), лежащего напротив вычисляемого катета, и длина гипотенузы (C). Это определение утверждает, что синус этого известного угла равен отношению длины искомого катета к длине гипотенузы. Это значит, что длина искомого катета равна произведению длины гипотенузы на синус известного угла: A=C∗sin(α). Для этих же известных величин можно использовать и определение функции косеканс и рассчитать нужную длину, разделив длину гипотенузы на косеканс известного угла A=C/cosec(α).
3
Задействуйте определение прямой тригонометрической функции косинус, если кроме длины гипотенузы (C) известна и величина острого угла (β), прилегающего к искомому катету. Косинус этого угла определяется как соотношение длин искомого катета и гипотенузы, а из этого можно сделать вывод, что длина катета равна произведению длины гипотенузы на косинус известного угла: A=C∗cos(β). Можно воспользоваться определением функции секанс и вычислить нужное значение, разделив длину гипотенузы на секанс известного угла A=C/sec(β).
4
Выведите нужную формулу из аналогичного определения для производной тригонометрической функции тангенс, если кроме величины острого угла (α), лежащего напротив искомого катета (A), известна длина второго катета (B). Тангенсом противолежащего искомому катету угла называют отношение длины этого катета к длине второго катета. Значит, искомая величина будет равна произведению длины известного катета на тангенс известного угла: A=B∗tg(α). Из этих же известных величин можно вывести и другую формулу, если воспользоваться определением функции котангенс. В этом случае для вычисления длины катета надо будет найти соотношение длины известного катета к котангенсу известного угла: A=B/ctg(α).
Видео по теме

Совет 5 : Что такое катет

Слово «катет» пришло в русский язык из греческого. В точном переводе оно означает отвес, то есть перпендикуляр к поверхности земли. В математике катетами называются стороны, образующие прямой угол прямоугольного треугольника. Противолежащая этому углу сторона называется гипотенузой. Термин «катет» применяется также в архитектуре и технологии сварочных работ.
Что такое катет
Начертите прямоугольный треугольник АСВ. Обозначьте его катеты как а и b, а гипотенузу — как с. Все стороны и углы прямоугольного треугольника связаны между собой определенными отношениями. Отношение катета, противолежащего одному из острых углов, к гипотенузе называется синусом данного угла. В данном треугольнике sinCAB=a/c. Косинус — это отношение к гипотенузе прилежащего катета, то есть cosCAB=b/c. Обратные отношения называются секансом и косекансом.

Секанс данного угла получается при делении гипотенузы на прилежащий катет, то есть secCAB=c/b. Получается величина, обратная косинусу, то есть выразить ее можно по формуле secCAB=1/cosSAB.
Косеканс равен частному от деления гипотенузы на противолежащий катет и это величина, обратная синусу. Она может быть рассчитана по формуле cosecCAB=1/sinCAB

Оба катета связаны между собой тангенсом и котангенсом. В данном случае тангенсом будет отношение стороны a к стороне b, то есть противолежащего катета к прилежащему. Это отношение может быть выражено формулой tgCAB=a/b. Соответственно, обратным отношением будет котангенс: ctgCAB=b/a.

Соотношение между размерами гипотенузы и обоих катетов определил еще древнегреческий математик Пифагор. Теоремой, названной его именем, люди пользуются до сих пор. Она гласит, что квадрат гипотенузы равен сумме квадратов катетов, то есть с2=a2+b2. Соответственно, каждый катет будет равняться квадратному корню из разности квадратов гипотенузы и другого катета. Эту формулу можно записать как b=√(с2-а2).

Длину катета можно выразить и через известные вам соотношения. Согласно теоремам синусов и косинусов, катет равен произведению гипотенузы на одну из этих функций. Можно его выразить и через тангенс или котангенс. Катет а можно найти, например, по формуле a = b*tan CAB. Точно таким же образом, в зависимости от заданных тангенса или котангенса, определяется и второй катет.

В архитектуре также используется термин «катет». Он применяется по отношению к ионической капители и обозначает отвес через середину ее задка. То есть и в этом случае этим термином обозначается перпендикуляр к заданной линии.

В технологии сварочных работ есть понятие «катет углового шва». Как и в других случаях, это самое короткое расстояние. Здесь речь идет о промежутке между одной из свариваемых деталей до границы шва, находящегося на поверхности другой детали.
Видео по теме
Источники:
  • что такое катет и гипотенуза

Совет 6 : Как найти угол, прилежащий к катету

Две стороны треугольника, образующие его прямой угол, перпендикулярны друг дружке, что и нашло отражение в их греческом названии («катеты»), сегодня используемом повсеместно. К каждой из этих сторон примыкает по два угла, один из которых вычислять нет необходимости (прямой угол), а другой всегда является острым и рассчитать его величину можно несколькими способами.
Как найти угол, прилежащий к катету
Инструкция
1
Если известна величина одного из двух острых углов (β) прямоугольного треугольника, то для нахождения другого (α) больше ничего не нужно. Используйте теорему о сумме углов треугольника в евклидовой геометрии - так как она (сумма) всегда равна 180°, то рассчитайте величину недостающего угла вычитанием величины известного острого угла из 90°: α=90°-β.
2
Если кроме величины одного из острых углов (β) известны длины обоих катетов (А и В), то можно использовать и другой способ вычисления - с помощью тригонометрических функций. Согласно теореме синусов отношения длин каждого из катетов к синусу противолежащего угла одинаковы, поэтому синус нужного угла (α) находите делением длины прилежащего к нему катета на длину второго катета с последующим умножением результата на синус известного острого угла. Тригонометрическая функция, преобразующая значение синуса в соответствующую этому значению величину в угловых градусах, называется арксинусом - примените ее к полученному выражению и вы получите окончательную формулу: α=arcsin(sin(β)*А/В).
3
Если известны лишь длины обоих катетов (А и В), то их соотношения позволят получить тангенс или котангенс (в зависимости от того, что поставить в числитель) вычисляемого угла (α). Применяйте к этим соотношениям соответствующие им обратные функции: α = arctg(А/В) = arcctg(В/А).
4
Если известны только длина (С) гипотенузы (самой длиной стороны) и катета (В), прилежащего к вычисляемому углу (α), то отношение этих длин даст значение косинуса искомого угла. Как и для остальных тригонометрических функций, существует функция обратная косинусу (арккосинус) которая поможет из этого соотношения вывести величину угла в градусах: α=arcsin(В/С).
5
При тех же исходных данных, что и в предыдущем шаге, можно воспользоваться и вовсе экзотической тригонометрической функцией - секанс. Она получается делением длины гипотенузы (С) на длину прилежащего к нужному углу катета (В) - находите арксеканс от этого соотношения дли вычисления величины прилегающего к катету угла: α=arcsес(С/В).
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500