Совет 1: Как определяется градусная мера дуги

Каждый угол имеет свою градусную величину. Это известно школьникам еще с младших классов. Но вскоре в учебной программе появляется понятие градусной меры дуги, и новые задачи требуют умение правильно ее вычислять.
Инструкция
1
Дуга - это часть окружности, заключенная между двумя точками, лежащими на этой окружности. Любую дугу можно выразить через числовые значения. Ее главной характеристикой наравне с длинной является значение градусной меры.
2
Градусная мера дуги окружности, как и угла, измеряется в самих градусах, коих 360, или в минутах, которые в свою очередь делятся на 60 секунд. На письме дуга обозначается значком, который напоминает нижнюю часть окружности и буквами: двумя заглавными (АВ) или одной строчной (a).
3
Но при выделении на окружности одной дуги непроизвольно образуется другая. Поэтому для того чтобы однозначно понимать, о какой дуге идет речь, отметьте на выбранной дуге еще одну точку, например, С. Тогда обозначение приобретет вид АВС.
4
Отрезок, который образуется двумя точками, ограничивающими дугу, является хордой.
5
Градусную меру дуги можно найти через значение вписанного угла, который, имея точку вершины на самой окружности, опирается на данную дугу. Такой угол называется в математике вписанным, и его градусная мера равна половине дуги, на которую он опирается.
6
Также в окружности существует центральный угол. Он также упирается на искомую дугу, а его вершина находится уже не на окружности, а в центре. И его числовое значение равно уже не половине градусной меры дуги, а ее целому значению.
7
Поняв, как вычисляется дуга через опирающийся на нее угол, можно применить этот закон в обратном направлении и вывести правило, что вписанный угол, который опирается на диаметр, является прямым. Так как диаметр делит окружность на две равные части, значит, любая из дуг имеет значение в 180 градусов. Следовательно, вписанный угол равен 90 градусов.
8
Также, исходя из способа поиска градусного значения дуги, справедливо правило, что углы, опирающиеся на одну дугу, имеют равное значение.
9
Значение градусной меры дуги часто применяется для вычисления длины окружности или самой дуги. Для этого используйте формулу L= π*R*α/180.

Совет 2: Что такое градусная мера угла

Слово «угол» имеет различные толкования. В геометрии угол – это часть плоскости, ограниченная двумя лучами, выходящими из одной точки – вершины. Когда речь идет о прямых, острых, развернутых углах, то подразумеваются именно геометрические углы.



Как и любые фигуры в геометрии, углы можно сравнивать. Равенство углов определяется с помощью движения. Угол нетрудно разделить на две равные части. Разделить фигуру на три части немного сложнее, но все же это можно сделать с помощью линейки и циркуля. Кстати, в древности эта задача казалась довольно трудной. Описать, что один угол больше или меньше другого, геометрически несложно.

В качестве единицы измерения углов принят градус – 1/180 часть развернутого угла. Величина угла – это число, показывающее, во сколько раз угол, выбранный за единицу измерения, укладывается в рассматриваемой фигуре.

Каждый угол имеет градусную меру, большую нуля. Развернутый угол равен 180 градусам. Градусная мера угла считается равной сумме градусных мер углов, на которые он разбивается любым лучом на плоскости, ограниченной его сторонами.

От любого луча в заданную плоскость можно отложить угол с некоторой градусной мерой, не превышающей 180 градусов. Причем такой угол будет только один. Мерой плоского угла, который является частью полуплоскости, считается градусная мера угла с аналогичными сторонами. Мерой плоскости угла, содержащего полуплоскость, является значение 360 – α, где α – градусная мера дополнительного плоского угла.

Градусная мера угла дает возможность перейти от геометрического их описания к числовому. Так, под прямым углом понимается угол, равный 90 градусам, тупой угол – это угол, меньше 180 градусов, но больше 90, острый угол не превышает 90 градусов.

Помимо градусной, существует радианная мера угла. В планиметрии длина дуги окружности обозначается как L, радиус – r, а соответствующий центральный угол – α. Причем эти параметры связаны соотношением α = L/r. Эта формула лежит в основе радианной меры измерения углов. Если L=r, то угол α будет равен одному радиану. Итак, радианная мера угла – это отношение длины дуги, проведенной произвольным радиусом и заключенной между сторонами этого угла, к радиусу дуги. Полный оборот в градусном измерении (360 градусов) соответствует 2π в радианном. Один радиан равен 57,2958 градусам.


Видео по теме
Источники:
  • градусная мера углов формула

Совет 3: Как найти градусную меру угла

Измерение величин плоских углов в градусах придумали в древнем Вавилоне задолго до начала нашей эры. Жители этого государства предпочитали шестидесятеричную систему исчисления, поэтому деление углов на 180 или 360 единиц сегодня выглядит немного странно. Впрочем, предлагаемые в современной системе СИ единицы измерения, кратные числу Пи, не мене странны. Этими двумя вариантами не ограничиваются используемые сегодня обозначения углов, поэтому задача перевода их величин в градусную меру возникает достаточно часто.
Инструкция
1
Если в градусную меру нужно перевести величину угла в радианах, исходите из того, что одному градусу соответствует число радиан, равное 1/180 доле числа Пи. Эта математическая константа имеет бесконечное число знаков после запятой, поэтому и коэффициент перевода из радиан в градусы тоже является бесконечной десятичной дробью. Это означает, что абсолютно точного значения в формате десятичной дроби получить не получится, поэтому коэффициент перевода нужно округлить. Например, при точности в одну миллиардную долю единицы расчетный коэффициент будет равен 0,017453293. После округления до нужного числа знаков, разделите на этот коэффициент исходное число радиан, и вы получите градусную меру угла.
2
При решении математических задач из разделов, относящихся к геометрии, часто встречаются формулы, в которых величины углов выражены не радианами, а долями числа Пи. Если вы получите решение, содержащее эту константу, для перевода его в градусы замените π числом 180. Например, если центральный угол определен выражением π/4, это означает, что его градусная мера равна 180°/4=45°.
3
Углы могут быть выражены и единицами, которые имеют название «оборот». Такая единица соответствует 360°, поэтому проблем с пересчетом возникнуть не должно. Например, если в задании говорится об угле в полтора оборота, это соответствует 360*1,5=540° в градусном измерении.
4
Иногда в геометрических задачах упоминается развернутый угол. Она образуется двумя лучами противоположного направления, то есть лежащими на одной прямой. Используйте число 180 для выражения величины развернутого угла в градусах.
5
В геодезии, картографии, астрономии градусы делятся на еще более мелкие единицы, которые имеют собственные названия - минуты и секунды. Это деление имеет корни там же, где и градусы, поэтому каждый градус включает в себя 60 минут или 3600 секунд. Используйте эти числа, если секунды и минуты надо заменить десятыми долями градуса. Например, углу в 11°14'22" соответствует десятичная дробь, приблизительно равная 11 + 14/60 + 22/3600 ≈ 11,2394°.
Источники:
  • угол 5 градусов
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше