Совет 1: Как посчитать среднее значение

В математике и статистике среднее арифметическое (или просто среднее) набора чисел — это сумма всех чисел в этом наборе, поделённая на их количество. Среднее арифметическое является наиболее общим и самым распространённым понятием средней величины.
Вам понадобится
  • Знания по математике.
Инструкция
1
Пусть дан набор из четырех чисел. Необходимо найти среднее значение этого набора. Для этого сначала найдем сумму всех этих чисел. Допустим эти числа 1, 3, 8, 7. Их сумма равна S = 1 + 3 + 8 + 7 = 19. Набор чисел должен состоять из чисел одного знака, в противном случае смысл в вычислении среднего значения теряется.
2
Среднее значение набора чисел равно сумме чисел S, деленной на количество этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.
3
Для набора числе также можно найти не только среднее арифметическое, но и среднее геометрическое. Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось. Среднее геометрическое G ищется по формуле: корень N-ой степени из произведения набора чисел, где N - количество числе в наборе. Рассмотрим тот же набор чисел: 1, 3, 8, 7. Найдем их среднее геометрическое. Для этого посчитаем произведение: 1*3*8*7 = 168. Теперь из числа 168 необходимо извлечь корень 4-ой степени: G = (168)^1/4 = 3.61. Таким образом среднее геометрическое набора чисел равно 3.61.

Совет 2: Как найти среднее геометрическое

Среднее геометрическое в целом используется реже, чем арифметическое среднее, однако оно может быть полезно при вычислении среднего значения показателей, изменяющихся с течением времени (заработная плата отдельного сотрудника, динамика показателей успеваемости и т.п.).
Вам понадобится
  • Инженерный калькулятор
Инструкция
1
Для того чтобы найти среднее геометрическое ряда чисел, для начала нужно перемножить все эти числа. Например, вам дан набор из пяти показателей: 12, 3, 6, 9 и 4. Перемножим все эти числа: 12х3х6х9х4=7776.
2
Теперь из полученного числа нужно извлечь корень степени, равной количеству элементов ряда. В нашем случае из числа 7776 нужно будет извлечь корень пятой степени при помощи инженерного калькулятора. Полученное после этой операции число – в данном случае число 6 – будет являться средним геометрическим для исходной группы чисел.
3
Если у вас под рукой нет инженерного калькулятора, то вычислить среднее геометрическое ряда чисел можно с помощью функции СРГЕОМ в программе Excel или при помощи одного из онлайн-калькуляторов, специально предназначенных для вычисления средних геометрических значений.
Обратите внимание
Если потребуется найти среднее геометрическое всего для двух чисел, то инженерный калькулятор вам не понадобится: извлечь корень второй степени (квадратный корень) из любого числа можно при помощи самого обычного калькулятора.
Полезный совет
В отличие от среднего арифметического, на геометрическое среднее не так сильно влияют большие отклонения и колебания между отдельными значениями в исследуемом наборе показателей.
Источники:
  • Онлайн-калькулятор, рассчитывающий среднее геометрическое
  • среднее геометрическое формула

Совет 3: Как посчитать среднее арифметическое

Среднее значение - это одна из характеристик набора чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом наборе чисел. Среднее арифметическое значение - наиболее часто используемая разновидность средних.
Инструкция
1
Сложите все числа множества и разделите их на количество слагаемых, чтобы получить среднее арифметическое значение. В зависимости от конкретных условий вычисления иногда бывает проще делить каждое из чисел на количество значений множества и суммировать результат.
2
Используйте, например, входящий в состава ОС Windows калькулятор, если вычислить среднее арифметическое значение в уме не представляется возможным. Открыть его можно с помощью диалога запуска программ. Для этого нажмите «горячие клавиши» WIN + R или щелкните кнопку «Пуск» и выберите в главном меню команду «Выполнить». Затем напечатайте в поле ввода calc и нажмите на клавиатуре Enter либо щелкните кнопку «OK». Это же можно сделать через главное меню - раскройте его, перейдите в раздел «Все программы» и в секции «Стандартные» и выберите строку «Калькулятор».
3
Введите последовательно все числа множества, нажимая на клавиатуре после каждого из них (кроме последнего) клавишу «Плюс» или щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже можно как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.
4
Нажмите клавишу с косой чертой (слэш) или щелкните этот значок в интерфейсе калькулятора после ввода последнего значения множества и напечатайте количество чисел в последовательности. Затем нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.
5
Можно для этой же цели использовать табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если после ввода каждого числа вы будете нажимать Enter или клавишу со стрелкой вниз или вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.
6
Выделите все введенные значения и в левом нижнем углу окна редактора (в строке состояния) увидите среднеарифметическое значение для выделенных ячеек.
7
Щелкните следующую за последним введенным числом ячейку, если вам не достаточно только увидеть среднее арифметическое значение. Раскройте выпадающий список с изображением греческой буквы сигма (Σ) в группе команд «Редактирование» на вкладке «Главная». Выберите в нем строку «Среднее» и редактор вставит нужную формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Совет 4: Как посчитать среднее арифметическое число

Среднее арифметическое - одна из мер центральной тенденции, широко используемая в математике и статистических расчетах. Найти среднее арифметическое число для нескольких значений очень просто, но у каждой задачи есть свои нюансы, знать которые для выполнения верных расчетов просто необходимо.

Что такое среднее арифметическое число


Среднее арифметическое число определяет усредненное значение для всего исходного массива чисел. Другими словами, из некоторого множества чисел выбирается общее для всех элементов значение, математическое сравнение которого со всеми элементами носит приближенно равный характер. Среднее арифметическое число используется, преимущественно, при составлении финансовых и статистических отчетов или для расчетов количественных результатов проведенных подобных опытов.

Как найти среднее арифметическое число


Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой μ (мю) или x (икс с чертой). Далее алгебраическую сумму следует разделить на количество чисел в массиве. В рассматриваемом примере чисел было пять, поэтому среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с отрицательными числами


Если в массиве присутствуют отрицательные числа, то нахождение среднего арифметического значения происходит по аналогичному алгоритму. Разница имеется только при рассчетах в среде программирования, или же если в задаче есть дополнительные условия. В этих случаях нахождение среднего арифметического чисел с разными знаками сводится к трем действиям:

1. Нахождение общего среднего арифметического числа стандартным методом;
2. Нахождение среднего арифметического отрицательным чисел.
3. Вычисление среднего арифметического положительных чисел.

Ответы каждого из действий записываются через запятую.

Натуральные и десятичные дроби


Если массив чисел представлен десятичными дробями, решение происходит по методу вычисления среднего арифметического целых чисел, но сокращение результата производится по требованиям задачи к точности ответа.

При работе с натуральными дробями их следует привести к общему знаменателю, который умножается на количество чисел в массиве. В числителе ответа будет сумма приведенных числителей исходных дробных элементов.

Совет 5: Как найти среднее геометрическое чисел

Среднее геометрическое чисел зависит не только от абсолютной величины самих чисел, но и от их количества. Нельзя путать среднее геометрическое и среднее арифметическое чисел, поскольку они находятся по разным методикам. При этом среднее геометрическое всегда меньше или равно среднему арифметическому.
Вам понадобится
  • Инженерный калькулятор.
Инструкция
1
Учитывайте, что в общем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует количеству чисел. Например, если нужно найти среднее геометрическое пяти чисел, то из произведения нужно будет извлекать корень пятой степени.
2
Для нахождения среднего геометрического двух чисел используйте основное правило. Найдите их произведение, после чего извлеките из него квадратный корень, поскольку числа два, что соответствует степени корня. Например, для того чтобы найти среднее геометрическое чисел 16 и 4, найдите их произведение 16•4=64. Из получившегося числа извлеките квадратный корень √64=8. Это и будет искомая величина. Обратите внимание на то, что среднее арифметическое этих двух чисел больше и равно 10. Если корень не извлекается нацело, произведите округление результата до нужного порядка.
3
Чтобы найти среднее геометрическое более чем двух чисел, тоже используйте основное правило. Для этого найдите произведение всех чисел, для которых нужно найти среднее геометрическое. Из полученного произведения извлеките корень степени, равной количеству чисел. Например, чтобы найти среднее геометрическое чисел 2, 4 и 64, найдите их произведение. 2•4•64=512. Поскольку нужно найти результат среднего геометрического трех чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, поэтому воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка "x^y". Наберите число 512, нажмите кнопку "x^y", после чего наберите число 3 и нажмите кнопку "1/х", чтобы найти значение 1/3, нажмите кнопку "=". Получим результат возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.
4
С помощью инженерного калькулятора можно найти среднее геометрическое другим способом. Найдите на клавиатуре кнопку log. После этого возьмите логарифм для каждого из чисел, найдите их сумму и поделите ее на количество чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Например, для того чтобы найти среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе набор операций. Наберите число 2, после чего нажмите кнопку log, нажмите кнопку "+", наберите число 4 и снова нажмите log и "+", наберите 64, нажмите log и "=". Результатом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число разделите на 3, поскольку это количество чисел, по которым ищется среднее геометрическое. Из результата возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В результате получится число 8, это и есть искомое среднее геометрическое.
Обратите внимание
Среднее значение не может быть больше самого большого числа в наборе и меньше самого маленького.
Полезный совет
В математической статистике среднее значение величины называется математическим ожиданием.
Источники:
  • как вычислить среднее значение
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше