Совет 1: Как найти площадь диагонального сечения

Если по обе стороны некоторой плоскости есть точки, принадлежащие объемной фигуре (например, многограннику), эту плоскость можно назвать секущей. А двухмерная фигура, образованная общими точками плоскости и многогранника, в этом случае называется сечением. Такое сечение будет являться диагональным, если одна из диагоналей основания принадлежит секущей плоскости.
Как найти площадь диагонального сечения
Инструкция
1
Диагональное сечение куба имеет форму прямоугольника, площадь которого (S) нетрудно рассчитать, зная длину любого ребра (a) объемной фигуры. В этом прямоугольнике одной из сторон будет высота, совпадающая с длиной ребра. Длину другой - диагонали - рассчитайте по теореме Пифагора для треугольника, в котором она является гипотенузой, а два ребра основания - катетами. В общем виде ее можно записать так: a*√2. Площадь диагонального сечения найдите умножением двух его сторон, длины которых вы выяснили: S = a*a*√2 = a²*√2. Например, при длине ребра в 20 см площадь диагонального сечения куба должна быть примерно равна 20²*√2 ≈ 565,686 см².
2
Для вычисления площади диагонального сечения параллелепипеда (S) действуйте так же, но учитывайте, что в теореме Пифагора в этом случае участвуют катеты разной длины - длина (l) и ширина (w) объемной фигуры. Длина диагонали в этом случае будет равна √(l²+w²). Высота (h) тоже может отличаться от длин ребер оснований, поэтому в общем виде формула площади сечения может быть записана так: S = h*√(l²+w²). Например, если длина, высота и ширина параллелепипеда равны, соответственно, 10, 20 и 30 см, площадь его диагонального сечения составит приблизительно 30*√(10²+20²) = 30*√500 ≈ 670,82 см².
3
Диагональное сечение четырехугольной пирамиды имеет треугольную форму. Если высота (H) этого многогранника известна, а в его основании лежит прямоугольник, длины смежных ребер (a и b) которого тоже даны в условиях, расчет площади сечения (S) начните с вычисления длины диагонали основания. Как и в предыдущих шагах используйте для этого треугольник из двух ребер основания и диагонали, где по теореме Пифагора длина гипотенузы равна √(a²+b²). Высота пирамиды в таком многограннике совпадает с высотой треугольника диагонального сечения, опущенной на сторону, длину которой вы только что определили. Поэтому для нахождения площади треугольника найдите половину от произведения высоты на длину диагонали: S = ½*H*√(a²+b²). Например, при высоте в 30 см и длинах смежных сторон основания в 40 и 50 см площадь диагонального сечения должна быть примерно равна ½*30*√(40²+50²) = 15*√4100 ≈ 960,47 см².

Совет 2 : Как определить площадь поперечного сечения

Если поперечное сечение объекта имеет сложную форму, для вычисления его площади следует разбить его на участки простых форм. После этого появится возможность рассчитать площади этих участков по соответствующим формулам, а затем их сложить.
Как определить площадь поперечного сечения
Инструкция
1
Разделите поперечное сечение объекта на области, имеющие формы треугольников, прямоугольников, квадратов, секторов, кругов, полукругов и четвертей кругов. Если в результате разделения будут получаться ромбы, разделите каждый из них на два треугольника, а если параллелограммы - на два треугольника и один прямоугольник. Измерьте размеры каждой из этих областей: стороны, радиусы. Все измерения осуществляйте в одинаковых единицах.
2
Прямоугольный треугольник можно представить в виде половины прямоугольника, разделенного надвое по диагонали. Для расчета площади такого треугольника умножьте друг на друга длины тех сторон, которые примыкают к прямому углу (они называются катетами), затем результат умножения поделите на два. Если же треугольник прямоугольным не является, для расчета его площади вначале проведите в нем из любого угла высоту. Он окажется разделенным на два разных треугольника, каждый из которых будет прямоугольным. Измерьте длины катетов каждого из них, а затем по результатам измерений вычислите их площади.
3
Чтобы вычислить площадь прямоугольника, умножьте друг на друга длины двух его примыкающих друг к другу сторон. У квадрата они равны, поэтому можно длину одной стороны умножить саму на себя, то есть, возвести ее в квадрат.
4
Для определения площади круга поделите возведите его радиус в квадрат, а затем умножьте результат на число π. В случае, если фигура является не кругом, а полукругом, разделите площадь на два, а если четвертью круга - на четыре. У сектора измерьте угол между центром воображаемого центра и концами дуги, переведите его из градусов в радианы, умножьте на квадрат радиуса, а затем поделите на два.
5
Сложите все полученные площади между собой, и получится площадь, выраженная в единицах того же порядка, что и исходные данные. Например, если длины сторон и радиусы измерялись вами в миллиметрах, площадь получится в квадратных миллиметрах.
6
Значительно облегчить измерение площади сложной фигуры поможет прибор, называемый планиметром. Установите его шкалу на нуль, после чего проведите щупом по контуру фигуры. Прочитайте показания шкалы. Точность такого измерения получится сравнительно небольшой.
Видео по теме

Совет 3 : Как найти площадь сечения куба

Вопрос относится к аналитической геометрии. Он решается с привлечением уравнений пространственных прямых и плоскостей, понятия куба и его геометрических свойств, а также с использованием векторной алгебры. Могут понадобиться способы рения систем линейных уравнений.
Как найти площадь сечения куба
Инструкция
1
Выберите условия задачи так, чтобы они были исчерпывающими, но не избыточными. Секущую плоскость α следует задать общим уравнением вида Ax+By+Cz+D=0, что наилучшим образом согласуется с произвольным его выбором. Для задания куба вполне хватит координат любых трех его вершин. Возьмите, например, точки M1(x1,y1,z1), M2(x2,y2,z2), M3(x3,y3,z3), в соответствии с рисунком 1. На этом рисунке проиллюстрировано сечение куба. Оно пересекает два боковых ребра и три ребра оснований.
Как найти площадь сечения куба
2
Определитесь с планом дальнейшей работы. Предстоит искать координаты точек Q, L, N, W, R пересечения сечения с соответствующими ребрами куба. Для этого придется находить уравнения прямых, содержащих эти ребра, и искать точки пересечения ребер с плоскостью α. После этого последует разбиение пятиугольника QLNWR на треугольники (см. рис. 2) и вычисление пощади каждого из них с помощью свойств векторного произведения. Методика каждый раз одна и та же. Поэтому можно ограничиться точками Q и L и площадью треугольника ∆QLN.
Как найти площадь сечения куба
3
Направляющий вектор h прямой, содержащий ребро М1М5 (и точку Q), найдите как векторное произведение M1M2={x2-x1, y2-y1, z2-z1} и M2M3={x3-x2, y3-y2, z3-z2}, h={m1, n1, p1}=[M1M2× M2M3]. Полученный вектор является направляющим и для всех прочих боковых ребер. Длину ребра куба найдите как, например, ρ=√( (x2-x1)^2+(y2-y1)^2+(z2-z1)^2). Если модуль вектора h |h|≠ρ, то замените его соответствующим коллинеарным вектором s={m, n, p}=(h/|h|)ρ. Теперь запишите уравнение прямой, содержащей М1М5 параметрически (см. рис. 3). После подстановки соответствующих выражений в уравнение секущей плоскости получите А(x1+mt)+B(y1+nt)+C(z1+pt)+D=0. Определите t, подставьте в уравнения для М1М5 и запишите координаты точки Q(qx, qy, qz) (рис. 3).
Как найти площадь сечения куба
4
Очевидно, что точка М5 имеет координаты М5(x1+m, y1+n, z1+p). Направляющий вектор для прямой, содержащей ребро М5М8 совпадает с М2М3={x3-x2, y3-y2,z3-z2}. Затем повторите предыдущие рассуждения относительно точки L(lx, ly, lz) (см. рис. 4). Все дальнейшее, для N(nx, ny, nz) – точная копия это шага.
Как найти площадь сечения куба
5
Запишите векторы QL={lx-qx, ly-qy, lz-qz} и QN={nx-qx, ny-qy, nz-qz}. Геометрический смысл их векторного произведения состоит в том, что его модуль равен площади параллелограмма построенного на векторах. Поэтому площадь ∆QLN S1=(1/2)|[QL× QN]|. Следуйте предложенной методике и вычислите площади треугольников ∆QNW и ∆QWR - S1 и S2. Векторное произведение удобнее всего находить с помощью вектора-определителя (см. рис. 5). Запишите окончательный ответ S=S1+S2+S3.
Как найти площадь сечения куба
Источники:
  • Шипачев В.С. Высшая математика. 3-е изд., стер. – М.: Высш. школа, 1996. 496 с.: ил.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500