Совет 1: Как найти сечение параллелепипеда

Сечения геометрических фигур имеют различные формы. У параллелепипеда сечение всегда представляет собой прямоугольник или квадрат. Оно имеет ряд параметров, которые могут быть найдены аналитическим способом.
Инструкция
1
Через параллелепипед можно провести четыре сечения, которые представляют собой квадраты или прямоугольники. Всего он имеет два диагональных и два поперечных сечения. Как правило, они имеют разные размеры. Исключением является куб, у которого они одинаковы.
Перед тем как строить сечение параллелепипеда, составьте представление о том, что представляет собой эта фигура. Существует два вида параллелепипедов - обычный и прямоугольный. У обычного параллелепипеда грани располагаются под некоторым углом к основанию, а у прямоугольного они перпендикулярны ему. Все грани прямоугольного параллелепипеда представляют собой прямоугольники или квадраты. Из этого следует,что куб - это частный случай прямоугольного параллелепипеда.
2
У любого сечения параллелепипеда есть определенные характеристики. Основными из них являются площадь, периметр, длины диагоналей. Если из условия задачи известны стороны сечения или какие-либо иные его параметры, этого достаточно, чтобы найти его периметр или площадь. По сторонам определяются также диагонали сечений. Первый из этих параметров - площадь диагонального сечения.
Для того чтобы найти площадь диагонального сечения, нужно знать высоту и стороны основания параллелепипеда. Если даны длина и ширина основания параллелепипеда, то диагональ найдите по теореме Пифагора:
d=√a^2+b^2.
Найдя диагональ и зная высоту параллелепипеда, вычислите площадь сечения параллелепипеда:
S=d*h.
3
Периметр диагонального сечения тоже можно вычислять по двум величинам - диагонали основания и высоте параллелепипеда. В этом случае вначале найдите две диагонали (верхнего и нижнего оснований) по теореме Пифагора, а затем сложите с удвоенным значением высоты.
4
Если провести плоскость, параллельную ребрам параллелепипеда, можно получить сечение-прямоугольник, сторонами которого являются одна из сторон основания параллелепипеда и высота. Площадь этого сечения найдите следующим образом:
S=a*h.
Периметр этого сечения найдите аналогичным образом по следующей формуле:
p=2*(a+h).
5
Последний случай возникает, когда сечение проходит параллельно двум основаниям параллелепипеда. Тогда его площадь и периметр равны значению площади и периметра оснований, т.е.:
S=a*b - площадь сечения;

p=2*(a+b).

Совет 2: Как найти высоту параллелепипеда

Прежде, чем перейти к нахождению высоты параллелепипеда, нужно прояснить, что есть высота и что есть параллелепипед. В геометрии, высотой называют перпендикуляр, от вершины фигуры до ее основания или отрезок, кратчайшим способом соединяющий верхнее и нижнее основания. Параллелепипед – это многогранник, имеющий два параллельных и равных многоугольника в качестве оснований, углы которых соединены отрезками. Параллелепипед составлен из шести параллелограммов, попарно параллельных и равных друг другу.
Инструкция
1
Высоты в параллелограмме может быть три, в зависимости от расположения фигуры в пространстве, ведь повернув параллелепипед на бок, вы поменяете местами его основания и грани. Верхний и нижний параллелограммы – всегда основания. Если боковые ребра фигуры перпендикулярны основаниям, то параллелепипед прямой, и каждое его ребро – готовая высота. Можно измерить.
2
Чтобы из наклонного параллелепипеда получить прямой, того же размера, надо продолжить боковые грани в одном направлении. Затем, построить перпендикулярное сечение, от углов которого, отложить длину ребра параллелепипеда, и на этом расстоянии построить второе перпендикулярное сечение. Два построенных вами параллелограмма, ограничат новый параллелепипед, равновеликий первому. На будущее следует отметить, что объемы равновеликих фигур одинаковы.
3
Чаще вопрос о высоте нам встречается в задачах. Всегда нам даны сведения, позволяющие вычислить её. Это может быть объем, линейные размеры параллелепипеда, длины его диагоналей.

Так объем параллелепипеда равен произведению его основания на высоту, то есть, зная объем и размер основания, легко выяснить высоту путем деления первого на второе. Если вы имеете дело с прямоугольным параллелепипедом, то есть такие, основание которого прямоугольник, вам могут попытаться усложнить задачу, в связи с его особенными качествами. Так в прямоугольном параллелепипеде, квадрат любой его диагонали равен сумме квадратов трех измерений параллелепипеда. Если в «дано» к задаче о прямоугольном параллелепипеде указаны длина его диагонали и длины сторон основания, то этих сведений достаточно, чтобы выяснить размер искомой высоты.

Совет 3: Как найти диагонали параллелепипеда

Параллелепипед - частный случай призмы, у которой все шесть граней являются параллелограммами или прямоугольниками. Параллелепипед с прямоугольными гранями называют также прямоугольным. У параллелепипеда имеется четыре пересекающиеся диагонали. Если даны три ребра а, b, с, найти все диагонали прямоугольного параллелепипеда можно, выполняя дополнительные построения.
Инструкция
1
Нарисуйте прямоугольный параллелепипед. Запишите известные данные: три ребра а, b, с. Вначале постройте одну диагональ m. Для ее определения используем свойство прямоугольного параллелепипеда, согласно которому все его углы являются прямыми.
Как найти диагонали параллелепипеда
2
Постройте диагональ n одной из граней параллелепипеда. Построение проведите так, чтобы известное ребро, искомая диагональ параллелепипеда и диагональ грани вместе образовывали прямоугольный треугольник а, n, m.
Как найти диагонали параллелепипеда
3
Найдите построенную диагональ грани. Она является гипотенузой другого прямоугольного треугольника b, с, n. Согласно теореме Пифагора n² = с² + b². Вычислите данное выражение и возьмите корень квадратный из полученного значения – это будет диагональ грани n.
4
Найдите диагональ параллелепипеда m. Для этого в прямоугольном треугольнике а, n, m найдите неизвестную гипотенузу: m² = n² + a². Подставьте известные значения, затем вычислите корень квадратный. Полученный результат и будет первой диагональю параллелепипеда m.
5
Аналогичным образом проведите последовательно все остальные три диагонали параллелепипеда. Также для каждой из них выполните дополнительные построения диагоналей прилегающих граней. Рассматривая образуемые прямоугольные треугольники и применяя теорему Пифагора, найдите значения остальных диагоналей прямоугольного параллелепипеда.
Как найти диагонали параллелепипеда
Видео по теме
Источники:
  • нахождение параллелепипеда

Совет 4: Как найти объем параллепипеда

Форму параллелепипеда имеют многие реальные объекты. Примерами являются комната и бассейн. Детали, имеющие такую форму - не редкость и в промышленности. По этой причине нередко возникает задача нахождения объема данной фигуры.
Инструкция
1
Параллелепипед представляет собой призму, основанием которой является параллелограмм. У параллелепипеда имеются грани - все плоскости, формирующие данную фигуру. Всего у него насчитывается шесть граней, причем, все они являются параллелограммами. Его противоположные грани между собой равны и параллельны. Кроме того, он имеет диагонали, которые пересекаются в одной точке и в ней делятся пополам.
2
Параллелепипед бывает двух видов. У первого все грани являются параллелограммами, а у второго - прямоугольниками. Последний из них называется прямоугольным параллелепипедом. У него все грани прямоугольные, а боковые грани перпендикулярны к основанию. Если прямоугольный параллелепипед имеет грани, основы которых - квадраты, то он называется кубом. В этом случае, его грани и ребра равны. Ребром называется сторона любого многогранника, к числу которых относится и параллелепипед.
3
Для того, чтобы найти объем параллелепипеда, необходимо знать площадь его основания и высоту. Объем находится исходя из того, какой именно параллелепипед фигурирует в условиях задачи. У обыкновенного параллелепипеда в основании находится параллелограмм, а у прямоугольного - прямоугольник или квадрат, у которого всегда углы прямые. Если в основании параллелепипеда лежит параллелограмм, то его объем находится следующим образом:
V=S*H, где S - площадь основания, H -высота параллелепипеда
Высотой параллелепипеда обычно выступает его боковое ребро. В основании параллелепипеда может лежать и параллелограмм, не являющийся прямоугольником. Из курса планиметрии известно, что площадь параллелограмма равна:
S=a*h, где h - высота параллелограмма, a - длина основания, т.е. :
V=a*hp*H
4
Если имеет место второй случай, когда основание параллелепипеда - прямоугольник, то объем вычисляется по той же формуле, но площадь основания находится несколько иным образом:
V=S*H,
S=a*b, где a и b - соответственно, стороны прямоугольника и ребра параллелепипеда.
V=a*b*H
5
Для нахождения объема куба следует руководствоваться простыми логическими способами. Поскольку все грани и ребра куба равны, а в основании куба - квадрат, руководствуясь формулами, указанными выше, можно вывести следующую формулу:
V=a^3

Совет 5: Как построить сечение параллелепипеда

Во многих учебниках встречаются задания, связанные с построением сечений различных геометрических фигур, в том числе параллелепипедов. Для того чтобы справиться с такой задачей, следует вооружиться некоторыми знаниями.
Вам понадобится
  • - бумага;
  • - ручка;
  • - линейка.
Инструкция
1
На листе бумаге начертите параллелепипед. Если в вашей задаче сказано, что параллелепипед должен быть прямоугольным, то сделайте его углы прямыми. Помните, что противоположные ребра должны быть параллельны друг другу. Назовите его вершины, например, S1, T1, T, R, P, R1, P1 (как показано на рисунке).
Как построить сечение параллелепипеда
2
На грани SS1TT1 поставьте 2 точки: А и С, пусть точка А будет на отрезке S1T1, а точка С на отрезке S1S. Если в вашей задаче не сказано, где именно должны стоять эти точки, и не указано расстояние от вершин, поставьте их произвольно. Проведите прямую линию через точки А и С. Продолжите эту линию до пересечения с отрезком ST. Обозначьте место пересечения, пусть это будет точка М.
3
Поставьте точку на отрезке RT, обозначьте ее как точку В. Проведите прямую линию через точки М и В. Точку пересечения этой линии с ребром SP обозначьте как точку К.
4
Соедините точки К и С. Они должны лежать на одной грани PP1SS1. После этого через точку B проведите прямую линию, параллельную отрезку КС, продолжите линию до пересечения с ребром R1T1. Точку пересечения обозначьте как точку Е.
5
Соедините точки А и Е. После этого выделите получившийся многоугольник ACKBE другим цветом – это будет сечение заданного параллелепипеда.
Обратите внимание
Помните, что при построении сечения параллелепипеда можно соединять между собой только те точки, которые лежат в одной плоскости, если имеющихся у вас точек недостаточно для построения сечения, достраивайте их, путем продолжения отрезков до пересечения с гранью, на которой нужна точка.
Полезный совет
Всего в параллелепипеде может быть построено 4 сечения: 2 диагональных и 2 поперечных. Для большей наглядности, выделите получившийся многоугольник-сечение, для этого можете просто обвести или заштриховать его другим цветом.
Источники:
  • Построение сечений многогранников

Совет 6: Как найти длину диагоналей параллелепипеда

Параллелепипедом называется призма, основанием которой служит параллелограмм. Параллелограммы, из которых составлен параллелепипед, называются его гранями, их стороны — ребрами, а вершины параллелограммов — вершинами параллелепипеда.
Инструкция
1
У параллелепипеда можно построить четыре пересекающиеся диагонали. Если известны данные трех ребер а, b и с, найти длины диагоналей прямоугольного параллелепипеда не составит труда, выполняя дополнительные построения.
2
Сначала нарисуйте прямоугольный параллелепипед. Подпишите все известные вам данные, их должно быть три: ребра а, b и с. Начертите первую диагональ m. Для ее построения воспользуйтесь свойством прямоугольных параллелепипедов, согласно которому все углы подобных фигур являются прямыми.
3
Постройте диагональ n одной из граней параллелепипеда. Построение сделайте таким образом, чтобы известное ребро (а), неизвестная диагональ параллелепипеда и диагональ прилегающей грани (n) образовывали прямоугольный треугольник а, n, m.
4
Посмотрите на построенную диагональ грани (n). Она является гипотенузой другого прямоугольного треугольника b, с, n. Следуя теореме Пифагора, которая гласит, что квадрат гипотенузы равен сумме квадратов катетов (n² = с² + b²), найдите квадрат гипотенузы, затем извлеките корень квадратный из полученного значения – это и будет длина диагонали грани n.
5
Найдите диагональ самого параллелепипеда m. Для того, чтобы найти ее значение, в прямоугольном треугольнике а, n, m вычислите по той же формуле гипотенузу: m² = n² + a². Вычислите корень квадратный. Найденный результат будет первой диагональю вашего параллелепипеда. Диагональ m.
6
Точно так же проведите последовательно все остальные диагонали параллелепипеда, для каждой из которых выполняйте дополнительные построения диагоналей прилегающих граней. Используя теорему Пифагора, найдите значения остальных диагоналей данного параллелепипеда.
7
Есть еще один способ, с помощью которого можно найти длину диагонали. Согласно одному из свойств параллелограмма, квадрат диагонали равен сумме квадратов трех его сторон. Из этого следует, что длину можно найти сложив квадраты сторон параллелепипеда и из получившегося значения извлечь квадрат.
Полезный совет
Свойства параллелепипеда:

- параллелепипед симметричен относительно середины его диагонали;

- любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам, в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам;

- противолежащие грани параллелепипеда параллельны и равны;

- квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Источники:
  • Как найти диагональ прямоугольного параллелепипеда
  • свойство диагонали параллелепипеда

Совет 7: Как найти площадь параллелепипеда

Параллелепипед – объемная геометрическая фигура с тремя измерительными характеристиками: длиной, шириной и высотой. Все они участвуют в нахождении площади обеих поверхностей параллелепипеда: полной и боковой.
Инструкция
1
Параллелепипед – многогранник, построенный на основе параллелограмма. У него шесть граней, также являющихся этими двухмерными фигурами. В зависимости от того, как они расположены в пространстве, различают прямой и наклонный параллелепипед. Эта разница выражается в равенстве угла между основанием и боковым ребром 90°.
2
По тому, к какому частному случаю параллелограмма относится основание, можно выделить прямоугольный параллелепипед и наиболее распространенную его разновидность – куб. Эти формы наиболее часто встречаются в повседневной жизни и носят название стандартных. Они присущи бытовой технике, предметам мебели, электронным приборам и др., а также самим человеческим жилищам, размеры которых имеют большое значение для обитателей и риелторов.
3
Обычно считают площадь обеих поверхностей параллелепипеда, боковой и полной. Первая числовая характеристика представляет собой совокупность площадей его граней, вторая – та же величина плюс площади обоих оснований, т.е. сумма всех двухмерных фигур, из которых состоит параллелепипед. Следующие формулы носят название основных наряду с объемом:Sб = Р•h, где Р – пeримeтр основания, h – высота;Sп = Sб + 2•S, где So – площадь основания.
4
Для частных случаев, куба и фигуры с прямоугольными основаниями, формулы упрощаются. Теперь уже не нужно определять высоту, которая равна длине вертикального ребра, а площадь и периметр найти гораздо легче благодаря наличию прямых углов, в их определении участвуют только длина и ширина. Итак, для прямоугольного параллелепипеда:Sб = 2•с•(a + b), где 2•(а + b) – удвоенная сумма сторон основания (периметр), с – длина бокового ребра;Sп = Sб + 2•а•b = 2•а•с + 2•b•с + 2•a•b = 2•(а•с + b•с + а•b).
5
У куба все ребра имеют одинаковую длину, следовательно:Sб = 4•а•а = 4•а²;Sп = Sб + 2•а² = 6•а².

Совет 8: Как найти площадь сечения куба

Вопрос относится к аналитической геометрии. Он решается с привлечением уравнений пространственных прямых и плоскостей, понятия куба и его геометрических свойств, а также с использованием векторной алгебры. Могут понадобиться способы рения систем линейных уравнений.
Инструкция
1
Выберите условия задачи так, чтобы они были исчерпывающими, но не избыточными. Секущую плоскость α следует задать общим уравнением вида Ax+By+Cz+D=0, что наилучшим образом согласуется с произвольным его выбором. Для задания куба вполне хватит координат любых трех его вершин. Возьмите, например, точки M1(x1,y1,z1), M2(x2,y2,z2), M3(x3,y3,z3), в соответствии с рисунком 1. На этом рисунке проиллюстрировано сечение куба. Оно пересекает два боковых ребра и три ребра оснований.
Как найти площадь сечения куба
2
Определитесь с планом дальнейшей работы. Предстоит искать координаты точек Q, L, N, W, R пересечения сечения с соответствующими ребрами куба. Для этого придется находить уравнения прямых, содержащих эти ребра, и искать точки пересечения ребер с плоскостью α. После этого последует разбиение пятиугольника QLNWR на треугольники (см. рис. 2) и вычисление пощади каждого из них с помощью свойств векторного произведения. Методика каждый раз одна и та же. Поэтому можно ограничиться точками Q и L и площадью треугольника ∆QLN.
Как найти площадь сечения куба
3
Направляющий вектор h прямой, содержащий ребро М1М5 (и точку Q), найдите как векторное произведение M1M2={x2-x1, y2-y1, z2-z1} и M2M3={x3-x2, y3-y2, z3-z2}, h={m1, n1, p1}=[M1M2× M2M3]. Полученный вектор является направляющим и для всех прочих боковых ребер. Длину ребра куба найдите как, например, ρ=√( (x2-x1)^2+(y2-y1)^2+(z2-z1)^2). Если модуль вектора h |h|≠ρ, то замените его соответствующим коллинеарным вектором s={m, n, p}=(h/|h|)ρ. Теперь запишите уравнение прямой, содержащей М1М5 параметрически (см. рис. 3). После подстановки соответствующих выражений в уравнение секущей плоскости получите А(x1+mt)+B(y1+nt)+C(z1+pt)+D=0. Определите t, подставьте в уравнения для М1М5 и запишите координаты точки Q(qx, qy, qz) (рис. 3).
Как найти площадь сечения куба
4
Очевидно, что точка М5 имеет координаты М5(x1+m, y1+n, z1+p). Направляющий вектор для прямой, содержащей ребро М5М8 совпадает с М2М3={x3-x2, y3-y2,z3-z2}. Затем повторите предыдущие рассуждения относительно точки L(lx, ly, lz) (см. рис. 4). Все дальнейшее, для N(nx, ny, nz) – точная копия это шага.
Как найти площадь сечения куба
5
Запишите векторы QL={lx-qx, ly-qy, lz-qz} и QN={nx-qx, ny-qy, nz-qz}. Геометрический смысл их векторного произведения состоит в том, что его модуль равен площади параллелограмма построенного на векторах. Поэтому площадь ∆QLN S1=(1/2)|[QL× QN]|. Следуйте предложенной методике и вычислите площади треугольников ∆QNW и ∆QWR - S1 и S2. Векторное произведение удобнее всего находить с помощью вектора-определителя (см. рис. 5). Запишите окончательный ответ S=S1+S2+S3.
Как найти площадь сечения куба
Источники:
  • Шипачев В.С. Высшая математика. 3-е изд., стер. – М.: Высш. школа, 1996. 496 с.: ил.

Совет 9: Как найти площадь диагонального сечения призмы

Призма — это многогранник с двумя параллельными основаниями и боковыми гранями в форме параллелограмма и в количестве, равном числу сторон многоугольника основания.
Инструкция
1
В произвольной призме боковые ребра расположены под углом к плоскости основания. Частным случаем является прямая призма. В ней боковые стороны лежат в плоскостях, перпендикулярных основаниям. В прямой призме боковые грани — прямоугольники, а боковые ребра равны высоте призмы.
2
Диагональное сечение призмы — часть плоскости, полностью заключенная во внутреннем пространстве многогранника. Диагональное сечение может быть ограничено двумя боковыми ребрами геометрического тела и диагоналями оснований. Очевидно, что число возможных диагональных сечений при этом определяется количеством диагоналей в многоугольнике основания.
3
Или границами диагонального сечения могут служить диагонали боковых граней и противоположные стороны оснований призмы. Диагональное сечение прямоугольной призмы имеет форму прямоугольника. В общем случае произвольной призмы форма диагонального сечения - параллелограмм.
4
В прямоугольной призме площадь диагонального сечения S определяется по формулам:
S=d*H
где d — диагональ основания,
H — высота призмы.
Или S=a*D
где а — сторона основания, принадлежащая одновременно плоскости сечения,
D — диагональ боковой грани.
5
В произвольной непрямой призме диагональное сечение — параллелограмм, одна сторона которого равна боковому ребру призмы, другая - диагонали основания. Или сторонами диагонального сечения могут быть диагонали боковых граней и стороны оснований между вершинами призмы, откуда проведены диагонали боковых поверхностей. Площадь параллелограмма S определяется формулой:
S=d*h
где d — диагональ основания призмы,
h — высота параллелограмма — диагонального сечения призмы.
Или S=a*h
где а — сторона основания призмы, являющаяся и границей диагонального сечения,
h — высота параллелограмма.
6
Для определения высоты диагонального сечения недостаточно знать линейные размеры призмы. Необходимы данные о наклоне призмы к плоскости основания. Дальнейшая задача сводится к последовательному решению нескольких треугольников в зависимости от исходных данных об углах между элементами призмы.
Поиск
Совет полезен?
Комментарии 1
Пожаловаться
написал
>> У параллелепипеда сечение всегда представляет собой прямоугольник или квадрат.
Вы не правы. В сечении может быть также пятиугольник и шестиугольник
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше