Совет 1: Как найти диагональ прямоугольного параллелепипеда

Прямоугольный параллелепипед - это разновидность многогранника, состоящая из 6 граней, каждая из которых является прямоугольником. В свою очередь, диагональ - это отрезок, который соединяет противоположные вершины параллелограмма. Его длину можно найти двумя методами.
рис.1
Вам понадобится
  • Знание длины всех сторон параллелограмма.
Инструкция
1
Метод 1. Дан прямоугольный параллелепипед со сторонами a, b, c и диагональю d. Согласно одному из свойств параллелограмма, квадрат диагонали равен сумме квадратов трех его сторон. Отсюда следует, что сама длина диагонали может быть рассчитана с помощью извлечения квадрата из данной суммы (рис.1).
2
Метод 2. Допустим, что прямоугольный параллелепипед является кубом. Куб - это такой прямоугольный параллелепипед, у которого каждая грань представлена квадратом. Следовательно, все его стороны равны. Тогда формула для расчеты длины его диагонали будет выражена так:

d = a*√3
Источники:
  • формула диагонали прямоугольника

Совет 2 : Как найти высоту параллелепипеда

Прежде, чем перейти к нахождению высоты параллелепипеда, нужно прояснить, что есть высота и что есть параллелепипед. В геометрии, высотой называют перпендикуляр, от вершины фигуры до ее основания или отрезок, кратчайшим способом соединяющий верхнее и нижнее основания. Параллелепипед – это многогранник, имеющий два параллельных и равных многоугольника в качестве оснований, углы которых соединены отрезками. Параллелепипед составлен из шести параллелограммов, попарно параллельных и равных друг другу.
Куб - частный случай параллелепипеда
Инструкция
1
Высоты в параллелограмме может быть три, в зависимости от расположения фигуры в пространстве, ведь повернув параллелепипед на бок, вы поменяете местами его основания и грани. Верхний и нижний параллелограммы – всегда основания. Если боковые ребра фигуры перпендикулярны основаниям, то параллелепипед прямой, и каждое его ребро – готовая высота. Можно измерить.
2
Чтобы из наклонного параллелепипеда получить прямой, того же размера, надо продолжить боковые грани в одном направлении. Затем, построить перпендикулярное сечение, от углов которого, отложить длину ребра параллелепипеда, и на этом расстоянии построить второе перпендикулярное сечение. Два построенных вами параллелограмма, ограничат новый параллелепипед, равновеликий первому. На будущее следует отметить, что объемы равновеликих фигур одинаковы.
3
Чаще вопрос о высоте нам встречается в задачах. Всегда нам даны сведения, позволяющие вычислить её. Это может быть объем, линейные размеры параллелепипеда, длины его диагоналей.

Так объем параллелепипеда равен произведению его основания на высоту, то есть, зная объем и размер основания, легко выяснить высоту путем деления первого на второе. Если вы имеете дело с прямоугольным параллелепипедом, то есть такие, основание которого прямоугольник, вам могут попытаться усложнить задачу, в связи с его особенными качествами. Так в диагонали равен сумме квадратов трех измерений параллелепипеда. Если в «дано» к задаче о прямоугольном параллелепипеде указаны длина его диагонали и длины сторон основания, то этих сведений достаточно, чтобы выяснить размер искомой высоты.

Совет 3 : Как найти диагонали параллелепипеда

Параллелепипед - частный случай призмы, у которой все шесть граней являются параллелограммами или прямоугольниками. Параллелепипед с прямоугольными гранями называют также прямоугольным. У параллелепипеда имеется четыре пересекающиеся диагонали. Если даны три ребра а, b, с, найти все диагонали прямоугольного параллелепипеда можно, выполняя дополнительные построения.
Как найти диагонали параллелепипеда
Инструкция
1
Нарисуйте прямоугольный параллелепипед. Запишите известные данные: три ребра а, b, с. Вначале постройте одну диагональ m. Для ее определения используем свойство прямоугольного параллелепипеда, согласно которому все его углы являются прямыми.
Как найти диагонали параллелепипеда
2
Постройте диагональ n одной из граней параллелепипеда. Построение проведите так, чтобы известное ребро, искомая диагональ параллелепипеда и диагональ грани вместе образовывали прямоугольный треугольник а, n, m.
Как найти диагонали параллелепипеда
3
Найдите построенную диагональ грани. Она является гипотенузой другого прямоугольного треугольника b, с, n. Согласно теореме Пифагора n² = с² + b². Вычислите данное выражение и возьмите корень квадратный из полученного значения – это будет диагональ грани n.
4
Найдите диагональ параллелепипеда m. Для этого в прямоугольном треугольнике а, n, m найдите неизвестную гипотенузу: m² = n² + a². Подставьте известные значения, затем вычислите корень квадратный. Полученный результат и будет первой диагональю параллелепипеда m.
5
Аналогичным образом проведите последовательно все остальные три диагонали параллелепипеда. Также для каждой из них выполните дополнительные построения диагоналей прилегающих граней. Рассматривая образуемые прямоугольные треугольники и применяя теорему Пифагора, найдите значения остальных диагоналей прямоугольного параллелепипеда.
Как найти диагонали параллелепипеда
Видео по теме
Источники:
  • нахождение параллелепипеда

Совет 4 : Как найти длину диагоналей параллелепипеда

Параллелепипедом называется призма, основанием которой служит параллелограмм. Параллелограммы, из которых составлен параллелепипед, называются его гранями, их стороны — ребрами, а вершины параллелограммов — вершинами параллелепипеда.
Как найти длину диагоналей параллелепипеда
Инструкция
1
У параллелепипеда можно построить четыре пересекающиеся диагонали. Если известны данные трех ребер а, b и с, найти длины диагоналей прямоугольного параллелепипеда не составит труда, выполняя дополнительные построения.
2
Сначала нарисуйте прямоугольный параллелепипед. Подпишите все известные вам данные, их должно быть три: ребра а, b и с. Начертите первую диагональ m. Для ее построения воспользуйтесь свойством прямоугольных параллелепипедов, согласно которому все углы подобных фигур являются прямыми.
3
Постройте диагональ n одной из граней параллелепипеда. Построение сделайте таким образом, чтобы известное ребро (а), неизвестная диагональ параллелепипеда и диагональ прилегающей грани (n) образовывали прямоугольный треугольник а, n, m.
4
Посмотрите на построенную диагональ грани (n). Она является гипотенузой другого прямоугольного треугольника b, с, n. Следуя теореме Пифагора, которая гласит, что квадрат гипотенузы равен сумме квадратов катетов (n² = с² + b²), найдите квадрат гипотенузы, затем извлеките корень квадратный из полученного значения – это и будет длина диагонали грани n.
5
Найдите диагональ самого параллелепипеда m. Для того, чтобы найти ее значение, в прямоугольном треугольнике а, n, m вычислите по той же формуле гипотенузу: m² = n² + a². Вычислите корень квадратный. Найденный результат будет первой диагональю вашего параллелепипеда. Диагональ m.
6
Точно так же проведите последовательно все остальные диагонали параллелепипеда, для каждой из которых выполняйте дополнительные построения диагоналей прилегающих граней. Используя теорему Пифагора, найдите значения остальных диагоналей данного параллелепипеда.
7
Есть еще один способ, с помощью которого можно найти длину диагонали. Согласно одному из свойств параллелограмма, квадрат диагонали равен сумме квадратов трех его сторон. Из этого следует, что длину можно найти сложив квадраты сторон параллелепипеда и из получившегося значения извлечь квадрат.
Полезный совет
Свойства параллелепипеда:

- параллелепипед симметричен относительно середины его диагонали;

- любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам, в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам;

- противолежащие грани параллелепипеда параллельны и равны;

- квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Источники:
  • Как найти диагональ прямоугольного параллелепипеда
  • свойство диагонали параллелепипеда
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500