Совет 1: Как найти диагональ прямоугольного параллелепипеда

Прямоугольный параллелепипед - это разновидность многогранника, состоящая из 6 граней, каждая из которых является прямоугольником. В свою очередь, диагональ - это отрезок, который соединяет противоположные вершины параллелограмма. Его длину можно найти двумя методами.
Вам понадобится
  • Знание длины всех сторон параллелограмма.
Инструкция
1
Метод 1. Дан прямоугольный параллелепипед со сторонами a, b, c и диагональю d. Согласно одному из свойств параллелограмма, квадрат диагонали равен сумме квадратов трех его сторон. Отсюда следует, что сама длина диагонали может быть рассчитана с помощью извлечения квадрата из данной суммы (рис.1).
2
Метод 2. Допустим, что прямоугольный параллелепипед является кубом. Куб - это такой прямоугольный параллелепипед, у которого каждая грань представлена квадратом. Следовательно, все его стороны равны. Тогда формула для расчеты длины его диагонали будет выражена так:

d = a*√3

Совет 2: Как найти диагонали параллелепипеда

Параллелепипед - частный случай призмы, у которой все шесть граней являются параллелограммами или прямоугольниками. Параллелепипед с прямоугольными гранями называют также прямоугольным. У параллелепипеда имеется четыре пересекающиеся диагонали. Если даны три ребра а, b, с, найти все диагонали прямоугольного параллелепипеда можно, выполняя дополнительные построения.
Инструкция
1
Нарисуйте прямоугольный параллелепипед. Запишите известные данные: три ребра а, b, с. Вначале постройте одну диагональ m. Для ее определения используем свойство прямоугольного параллелепипеда, согласно которому все его углы являются прямыми.
Как найти диагонали параллелепипеда
2
Постройте диагональ n одной из граней параллелепипеда. Построение проведите так, чтобы известное ребро, искомая диагональ параллелепипеда и диагональ грани вместе образовывали прямоугольный треугольник а, n, m.
Как найти диагонали параллелепипеда
3
Найдите построенную диагональ грани. Она является гипотенузой другого прямоугольного треугольника b, с, n. Согласно теореме Пифагора n² = с² + b². Вычислите данное выражение и возьмите корень квадратный из полученного значения – это будет диагональ грани n.
4
Найдите диагональ параллелепипеда m. Для этого в прямоугольном треугольнике а, n, m найдите неизвестную гипотенузу: m² = n² + a². Подставьте известные значения, затем вычислите корень квадратный. Полученный результат и будет первой диагональю параллелепипеда m.
5
Аналогичным образом проведите последовательно все остальные три диагонали параллелепипеда. Также для каждой из них выполните дополнительные построения диагоналей прилегающих граней. Рассматривая образуемые прямоугольные треугольники и применяя теорему Пифагора, найдите значения остальных диагоналей прямоугольного параллелепипеда.
Как найти диагонали параллелепипеда
Видео по теме
Источники:
  • нахождение параллелепипеда

Совет 3: Как найти объем параллепипеда

Форму параллелепипеда имеют многие реальные объекты. Примерами являются комната и бассейн. Детали, имеющие такую форму - не редкость и в промышленности. По этой причине нередко возникает задача нахождения объема данной фигуры.
Инструкция
1
Параллелепипед представляет собой призму, основанием которой является параллелограмм. У параллелепипеда имеются грани - все плоскости, формирующие данную фигуру. Всего у него насчитывается шесть граней, причем, все они являются параллелограммами. Его противоположные грани между собой равны и параллельны. Кроме того, он имеет диагонали, которые пересекаются в одной точке и в ней делятся пополам.
2
Параллелепипед бывает двух видов. У первого все грани являются параллелограммами, а у второго - прямоугольниками. Последний из них называется прямоугольным параллелепипедом. У него все грани прямоугольные, а боковые грани перпендикулярны к основанию. Если прямоугольный параллелепипед имеет грани, основы которых - квадраты, то он называется кубом. В этом случае, его грани и ребра равны. Ребром называется сторона любого многогранника, к числу которых относится и параллелепипед.
3
Для того, чтобы найти объем параллелепипеда, необходимо знать площадь его основания и высоту. Объем находится исходя из того, какой именно параллелепипед фигурирует в условиях задачи. У обыкновенного параллелепипеда в основании находится параллелограмм, а у прямоугольного - прямоугольник или квадрат, у которого всегда углы прямые. Если в основании параллелепипеда лежит параллелограмм, то его объем находится следующим образом:
V=S*H, где S - площадь основания, H -высота параллелепипеда
Высотой параллелепипеда обычно выступает его боковое ребро. В основании параллелепипеда может лежать и параллелограмм, не являющийся прямоугольником. Из курса планиметрии известно, что площадь параллелограмма равна:
S=a*h, где h - высота параллелограмма, a - длина основания, т.е. :
V=a*hp*H
4
Если имеет место второй случай, когда основание параллелепипеда - прямоугольник, то объем вычисляется по той же формуле, но площадь основания находится несколько иным образом:
V=S*H,
S=a*b, где a и b - соответственно, стороны прямоугольника и ребра параллелепипеда.
V=a*b*H
5
Для нахождения объема куба следует руководствоваться простыми логическими способами. Поскольку все грани и ребра куба равны, а в основании куба - квадрат, руководствуясь формулами, указанными выше, можно вывести следующую формулу:
V=a^3

Совет 4: Как рассчитать диагональ прямоугольника

Замкнутая геометрическая фигура, образованная двумя парами лежащих друг напротив друга параллельных отрезков одинаковой длины, называется параллелограммом. А параллелограмм, все углы которого равны 90°, называют еще и прямоугольником. В этой фигуре можно провести два отрезка одинаковой длины, соединяющих противоположные вершины - диагонали. Длина этих диагоналей вычисляется несколькими способами.
Инструкция
1
Если известны длины двух смежных сторон прямоугольника (А и В), то длину диагонали (С) определить очень просто. Исходите из того, что диагональ лежит напротив прямого угла в треугольнике, образуемом ею и этими двумя сторонами. Это позволяет применить в расчетах теорему Пифагора и вычислить длину диагонали, найдя квадратный корень из суммы возведенных в квадрат длин известных сторон: С=v(А?+В?).
2
Если известна длина лишь одной стороны прямоугольника (А), а также величина угла (?), который с ней образует диагональ, то для вычисления длины этой диагонали (С) придется использовать одну из прямых тригонометрических функций - косинус. Разделите длину известной стороны на косинус известного угла - это и будет искомая длина диагонали: С=А/cos(?).
3
Если прямоугольник задан координатами своих вершин, то задача вычисления длины его диагонали сведется к нахождению расстояния между двумя точками в этой системе координат. Примените теорему Пифагора к треугольнику, который образуют проекции диагонали на каждую из координатных осей. Допустим, прямоугольник в двухмерных координатах образован вершинами A(X?;Y?), B(X?;Y?), C(X?;Y?) и D(X?;Y?). Тогда вам нужно вычислить расстояние между точками A и C. Длина проекции этого отрезка на ось X будет равна модулю разности координат |X?-X?|, а проекции на ось Y - |Y?-Y?|. Угол между осями равен 90°, из чего вытекает, что эти две проекции являются катетами, а длина диагонали (гипотенузы) равна квадратному корню из суммы квадратов их длин: AC=v((X?-X?)?+(Y?-Y?)?).
4
Для нахождения диагонали прямоугольника в трехмерной системе координат действуйте так же, как в предыдущем шаге, лишь добавив в формулу длину проекции на третью координатную ось: AC=v((X?-X?)?+(Y?-Y?)?+(Z?-Z?)?).
Видео по теме

Совет 5: Как рассчитать диагональ прямоугольника

В памяти многих осталась математическая прибаутка: Пифагоровы штаны во все стороны равны. Воспользуйтесь ею, чтобы вычислить диагональ прямоугольника.
Вам понадобится
  • Лист бумаги, линейка, карандаш, калькулятор с функцией вычисления корней.
Инструкция
1
Прямоугольник - это четырехугольник, все углы которого прямые. Диагональ прямоугольника – отрезок прямой, соединяющий две противоположные его вершины.
2
На листе бумаги с помощью линейки и карандаша нарисуйте произвольный прямоугольник АВСD. Лучше это сделать на тетрадном листе в клетку – так проще будет нарисовать прямые углы. Соедините отрезком вершины прямоугольника А и С. Полученный отрезок АС является диагональю прямоугольника АВСD.
3
Обратите внимание, диагональ АС разделила прямоугольник АВСD на треугольники АВС и АСD. Полученные треугольники АВС и АСD – прямые треугольники, т.к. углы АВС и АDС равны 90 градусам (по определению прямоугольника). Вспомните теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов.
4
Гипотенуза – это сторона треугольника, противолежащая прямому углу. Катеты – стороны треугольника, прилежащие к прямому углу. Применительно к треугольникам АВС и АСD: АВ и ВС, АD и DC– катеты, АС – общая гипотенуза для обоих треугольников (искомая диагональ). Следовательно, АС в квадрате = квадрат АВ + квадрат ВС или АС в квадрате = квадрат АD + квадрат DС. Подставьте значения длин сторон прямоугольника в вышеприведенную формулу и вычислите длину гипотенузы (диагонали прямоугольника).
5
Например, стороны прямоугольника АВСD равны следующим значениям: АВ = 5 см и ВС = 7см. Квадрат диагонали АС данного прямоугольника рассчитывается по теореме Пифагора: АС в квадрате = квадрат АВ + квадрат ВС = 52+72 = 25 + 49 = 74 кв.см. С помощью калькулятора вычислите значение квадратного корня 74. У вас должно получиться 8,6 см (округленное значение). Имейте в виду, что по одному из свойств прямоугольника, его диагонали равны. Значит длина второй диагонали BD прямоугольника АВСD равна длине диагонали АС. Для вышеприведенного примера эта величина составляет 8,6 см.
Видео по теме
Источники:
  • как найти длину диагонали прямоугольника

Совет 6: Как найти диагональ параллелограмма, если даны стороны

Параллелограмм - это четырехугольник, противоположные стороны которого параллельны. Прямые, соединяющие его противоположные углы, называются диагоналями. Их длина зависит не только от длин сторон фигуры, но и от величин углов в вершинах этого многоугольника, поэтому без знания хотя бы одного из углов вычислить длины диагоналей можно только в исключительных случаях. Таковыми являются частные случаи параллелограмма - квадрат и прямоугольник.
Инструкция
1
Если длины всех сторон параллелограмма одинаковы (a), то эту фигуру можно назвать еще и квадратом. Величины всех его углов равны 90°, а длины диагоналей (L) одинаковы и могут быть рассчитаны по теореме Пифагора для прямоугольного треугольника. Умножьте длину стороны квадрата на корень из двойки - результат и будет длиной каждой из его диагоналей: L=a*√2.
2
Если о параллелограмме известно, что он является прямоугольником с указанными в условиях длиной (a) и шириной (b), то и в этом случае длины диагоналей (L) будут равны. И здесь тоже задействуйте теорему Пифагора для треугольника, в котором гипотенузой является диагональ, а катетами - две смежные стороны четырехугольника. Искомую величину рассчитайте извлечением корня из суммы возведенных в квадрат ширины и высоты прямоугольника: L=√(a²+b²).
3
Для всех остальных случаев знания одних только длин сторон хватит лишь для определения величины, включающей в себя длины сразу обеих диагоналей - сумма их квадратов по определению равна удвоенной сумме квадратов длин сторон. Если же в дополнение к длинам двух смежных сторон параллелограмма (a и b) известен еще и угол между ними (γ), то это позволит рассчитать длины каждого отрезка, соединяющего противоположные углы фигуры. Длину диагонали (L₁), лежащей напротив известного угла, найдите по теореме косинусов - сложите квадраты длин смежных сторон, от результата отнимите произведение этих же длин на косинус угла между ними, а из полученной величины извлеките квадратный корень: L₁ = √(a²+b²-2*a*b*cos(γ)). Для нахождения длины другой диагонали (L₂) можно воспользоваться свойством параллелограмма, приведенным в начале этого шага - удвойте сумму квадратов длин двух сторон, от результата отнимите квадрат уже рассчитанной диагонали, а из полученного значения извлеките корень. В общем виде эту формулу можно записать так: L₂ = √(a²+b²- L₁²) = √(a²+b²-(a²+b²-2*a*b*cos(γ))) = √(a²+b²-a²-b²+2*a*b*cos(γ)) = √(2*a*b*cos(γ)).
Источники:
  • как найти длину диагонали параллелограмма
Источники:
  • формула диагонали прямоугольника
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше