Совет 1: Как найти диагональ четырехугольника

Четырехугольником называется фигура, состоящая из четырех сторон и углов, прилежащих к ним. К числу таких фигур относятся прямоугольник, трапеция, параллелограмм. В ряде задач по геометрии требуется найти диагональ одной из этих фигур.
Как найти диагональ четырехугольника
Инструкция
1
Диагональю четырехугольника называется отрезок, соединяющий его противоположные углы. У четырехугольника имеются две диагонали, которые между собой пересекаются в одной точке. Диагонали иногда бывают равными, как у прямоугольника и квадрата, а иногда имеют различную длину, как, например, у трапеции. Способ нахождения диагонали зависит от фигуры.Постройте прямоугольник со сторонами a и b и двумя диагоналями d1 и d2. Из свойств прямоугольника известно, что его диагонали между собой равны, пересекаются в одной точке и делятся в ней пополам. Если известны две стороны прямоугольника, то его диагонали найдите следующим образом: d1=√a^2+b^2=d2.Частным случаем прямоугольника является квадрат, у которого диагональ равна a√2. Кроме того, диагональ можно найти, зная площадь квадрата. Она равна: S = d^2/2.Отсюда длину диагонали вычислите по формуле: d = √2S.
2
Несколько иным образом решайте задачу, когда дан не прямоугольник, а параллелограмм. У этой фигуры, в отличие от прямоугольника или квадрата, равны между собой не все углы, а только противоположные. Если в условии задача присутствует параллелограмм со сторонами a и b и заданным между ними углом, как показано на рисунке к шагу, то диагональ найдите, используя теорему косинусов: d^2 = a^2+b^2-2ab*cosα.Параллелограмм, имеющий равные стороны, называется ромбом. Если по условиям задачи необходимо найти диагональ этой фигуры, то потребуются значения его второй диагонали и площади, поскольку диагонали этой фигуры неравны. Формула площади ромба выглядит следующим образом: S = d1*d2/2.Отсюда d2 равна удвоенной площади фигуры, деленной на d1: d2 = 2S/d1.
3
При вычислении площади трапеции придется воспользоваться тригонометрической функцией синуса. Если данная фигура является равнобочной, то, зная ее первую диагональ d1 и угол между двумя диагоналями AOD, как показано на рисунке к шагу, найдите вторую по следующей формуле: d2 = 2S/d1*sinφ. В данном случае рассматриваем трапецию ABCD.Существует также прямоугольная трапеция, диагональ которой найти несколько проще. Зная длину боковой стороны этой трапеции, совпадающей с ее высотой, а также нижнее основание, найдите ее диагональ, пользуясь обычной теоремой Пифагора. А именно сложите квадраты этих величин, а затем из результата извлеките квадратный корень.

Совет 2 : Как найти периметр четырёхугольника

Четырехугольник представляет собой геометрическую фигуру, обладающую четырьмя сторонами и таким же количеством углов. Независимо от типов четырехугольников, для подсчета их периметра существует единый подход. Но у него есть свои разновидности, которые вытекают из типа четырехугольника.
Четырехугольник ABCD
Вам понадобится
  • Знать все стороны четырехугольника.
Инструкция
1
Для того, чтобы рассчитать периметр четырехугольника ABCD со сторонами AB, BC, CD и DA, нужно сложить вместе каждую из его его сторон:

P = AB+BC+CD+DA, где

P - периметр четырехугольника.
2
Если дан квадрат со стороной a (у квадрата все стороны равны), то его периметр будет вычислен таким образом:

P = 4*a.
Как найти периметр четырёхугольника
3
Если дан прямоугольник или параллелограмм (у них обоих противолежащие стороны равны), то его площадь будет рассчитываться так:

P = 2*(a+b), где a и b - стороны прямоугольника/параллелограмма.
Как найти периметр четырёхугольника
Источники:
  • как найти периметр abcd

Совет 3 : Как вычислить стороны четырехугольника

Четырехугольник может быть правильным или иметь произвольную форму. Для правильных фигур известны соотношения между элементами. Эти связи выражены формулами, позволяющими находить стороны через другие параметры.
Как вычислить стороны четырехугольника
Инструкция
1
К правильным четырехугольникам относятся параллелограмм и трапеция. Если все стороны параллелограмма равны, такая фигура называется ромб. Если у параллелограмма все четыре угла прямые, то это прямоугольник. Частный случай прямоугольника — квадрат.
2
Допустим, заданный четырехугольник — квадрат. Если известен его периметр, то сторона равна одной четвертой части периметра. Для вычисления стороны квадрата по его площади нужно извлечь квадратный корень из числа, равного площади. Если известна диагональ, для нахождения стороны разделите диагональ на квадратный корень из числа два.
3
Если нужно определить стороны прямоугольника или параллелограмма, недостаточно знать только периметр или площадь. Необходимо дополнительно знать соотношение между сторонами. Обозначим одну сторону параллелограмма (прямоугольника) N, тогда другая сторона kN. Если значение k известно, то стороны можно вычислить через периметр Р по формуле N= Р/2(1+k) или через площадь S по формуле N=√(S/k).
4
В параллелограмме стороны можно вычислить, если кроме площади и периметра фигуры задан угол ά между сторонами. Нахождение одной из сторон параллелограмма сводится к решению квадратного уравнения вида:N²-NхP/2+S=0где N — сторона параллелограмма Р — периметр параллелограмма S — площадь параллелограмма.Вторую сторону M параллелограмма найдите из формулы площади S=NхMхSinά
5
Найти стороны трапеции также можно по известной площади и периметру фигуры, если задан угол между основанием трапеции и ее боковой стороной.
6
Для нахождения сторон произвольного четырехугольника разделите фигуру вспомогательной линией на два треугольника. Примените известные формулы соотношения элементов треугольника. Для возможного решения задачи должны быть известны не только площадь и периметр фигуры, но и величины углов четырехугольника.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500