Совет 1: Как найти высоту равнобедренной трапеции

Применение геометрии на практике, особенно в строительстве очевидно. Трапеция одна из наиболее часто встречающихся геометрических фигур, точность расчета элементов которой - залог красоты строящегося объекта.
Как найти высоту равнобедренной трапеции
Вам понадобится
  • калькулятор
Инструкция
1
Трапеция представляет собой четырехугольник, две стороны которого параллельны - основания, а две другие не параллельны – боковые стороны. Трапеция, боковые стороны которой равны, называется равнобедренной или равнобочной. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований, мы рассмотрим случай, когда диагонали не перпендикулярны.
2
Рассмотрим равнобедренную трапецию ABCD и опишем ее свойства, но лишь те из них, знание которых поможет нам решить поставленную задачу. Из определения равнобедренной трапеции основание AD = a параллельно BC = b, а боковая сторона AB = CD = c из этого следует, что углы при основаниях равны, то есть угол BAQ = CDS = α, таким же образом угол ABC = BCD = β. Обобщив вышесказанное, справедливо утверждать, что треугольник ABQ равен треугольнику SCD, а значит, отрезок AQ = SD = (AD – BC)/2 = (a – b)/2.
3
Если в условии задачи нам даны длины оснований a и b, а также длина боковой стороны с, то высота трапеции h, равная отрезку BQ, находится следующим образом. Рассмотрим треугольник ABQ, так как по определению высота трапеции есть перпендикуляр к основанию, то можно утверждать, что треугольник ABQ прямоугольный. Сторона AQ треугольника ABQ, исходя из свойств равнобедренной трапеции, находится по формуле AQ = (a – b)/2. Теперь зная две стороны AQ и c, по теореме Пифагора находим высоту h. Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов катетов. Запишем эту теорему применительно к нашей задаче: c^2=AQ^2+ h^2. Отсюда следует, что h = √(c^2-AQ^2).
4
Для примера рассмотрим трапецию ABCD, в которой основания AD = a = 10см BC = b = 4см, боковая сторона AB = c = 12см. Найти высоту трапеции h. Находим сторону AQ треугольника ABQ. AQ = (a – b)/2 = (10-4)/2=3см. Далее подставляем значения сторон треугольника в теорему Пифагора. h = √(c^2-AQ^2) = √(12^2-3^2) =√135=11.6см.
Полезный совет
Свойства равнобедренной трапеции.
Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.
Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
В равнобедренной трапеции углы при любом основании равны.
В равнобедренной трапеции длины диагоналей равны.
Около равнобедренной трапеции можно описать окружность.
Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Источники:
  • высоты в трапеции равны

Совет 2: Как найти диагональ равнобедренной трапеции

Трапеция, в которой длины боковых сторон равны, а основания параллельны, называется равнобедренной или равнобокой. Обе диагонали в такой геометрической фигуре имеют одинаковую длину, которую в зависимости от известных параметров трапеции можно рассчитать разными способами.
Как найти диагональ равнобедренной трапеции
Инструкция
1
Если известны длины оснований равнобедренной трапеции (A и B) и длина ее боковой стороны (C), то для определения длин диагоналей (D) можно воспользоваться тем, что сумма квадратов длин всех сторон равна сумме квадратов длин диагоналей. Это свойство вытекает из того факта, что каждая из диагоналей трапеции является гипотенузой треугольника, катетами в котором служат боковая сторона и основание. А согласно теореме Пифагора сумма квадратов длин катетов равна квадрату длины гипотенузы. Так как боковые стороны в равнобедренной трапеции равны, как и ее диагонали, то это свойство можно записать в таком виде: A² + B² + 2C² = 2D². Из этой формулы вытекает, что длина диагонали равна квадратному корню из половины суммы квадратов длин оснований, сложенной с квадратом длины боковой стороны: D = √((A² + B²)/2 + C²).
2
Если длины сторон не известны, но есть длина средней линии (L) и высота (H) равнобедренной трапеции, то длину диагонали (D) тоже вычислить несложно. Так как длина средней линии равна полусумме оснований трапеции, то это дает возможность найти длину отрезка между точкой на большем основании, в которую опущена высота, и вершиной, прилегающей к этому основанию. В равнобедренной трапеции длина этого отрезка будет совпадать с длиной средней линии. Так как диагональ замыкает этот отрезок и высоту трапеции в прямоугольный треугольник, то вычислить ее длину не составит труда. Например, по той же самой теореме Пифагора она будет равна квадратному корню из суммы квадратов высоты и средней линии: D=√(L² + H²).
3
Если известны длины обоих оснований равнобедренной трапеции (A и B) и ее высота (H), то, как и в предыдущем случае, можно вычислить длину отрезка между точкой, опущенной на большую сторону высоты и прилегающей к ней вершиной. Формула из предыдущего шага трансформируется к такому виду: D=√((A + B)²/4 + H²).
Источники:
  • диагональ в равнобедренной трапеции
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500