Совет 1: Как найти основания трапеции

Основания трапеции можно найти несколькими способами, в зависимости от заданных параметров. При известной площади, высоте и боковой стороне равнобокой трапеции последовательность расчетов сводится к вычислениям стороны равнобедренного треугольника. А также к использованию свойства равнобокой трапеции.
Как найти основания трапеции
Инструкция
1
Начертите равнобокую трапецию. Дана площадь трапеции - S, высота трапеции - h и боковая сторона - a. Опустите высоту трапеции на большее основание. Большее основание будет разделено на отрезки m и n.
Как найти основания трапеции
2
Для определения длины обоих оснований (х, y) примените свойство равнобокой трапеции и формулу расчета площади трапеции.
3
Согласно свойству равнобокой трапеции отрезок n равен полуразности оснований х и y. Следовательно, меньшее основание трапеции y можно представить в виде разности большего основания и отрезка n, помноженного на два: y = x - 2*n.
Как найти основания трапеции
4
Найдите неизвестный меньший отрезок n. Для этого вычислите одну их сторон получившегося прямоугольного треугольника. Треугольник образован высотой – h (катет), боковой стороной – a (гипотенуза) и отрезком – n (катет). Согласно теореме Пифагора неизвестный катет n² = a² - h². Подставьте известные числовые значения и высчитайте квадрат катета n. Возьмите корень квадратный из полученного значения – это и будет длина отрезка n.
Как найти основания трапеции
5
Подставьте полученное значение в первое уравнение для вычисления y. Площадь трапеции высчитывается по формуле S = ((х + y)*h)/2. Выразите неизвестную переменную: y = 2*S/h – х.
Как найти основания трапеции
6
Запишите оба полученных уравнения в систему. Подставляя известные значения, найдите две искомые величины в системе двух уравнений. Полученное решение системы х представляет собой длину большего основания, а y - меньшего основания.
Как найти основания трапеции
Источники:
  • высота равнобокой трапеции

Совет 2: Как найти основания прямоугольной трапеции

Математическая фигура с четырьмя углами называется трапецией, если пара противоположных ее сторон параллельна, а другая пара - нет. Параллельные стороны называют основаниями трапеции, две другие - боковыми. В прямоугольной трапеции один из углов при боковой стороне - прямой.
Как найти основания прямоугольной трапеции
Инструкция
1
Задача 1.Найдите основания BC и AD прямоугольной трапеции, если известна длина диагонали AC = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный треугольник CED. Известны гипотенуза c и угол между гипотенузой и катетом EDC. Найдите длины сторон CE и ED: по формуле угла CE = CD*sin(ADC); ED = CD*cos(ADC). Итак: CE = c*sinα; ED=c*cosα.
2
Рассмотрите прямоугольный треугольник ACE. Гипотенуза AC и катет CE вам известны, найдите сторону AE по правилу прямоугольного треугольника: сумма квадратов катетов равна квадрату гипотенузы. Итак: AE(2) = AC(2) - CE(2) = f(2) - c*sinα. Вычислите квадратный корень из правой части равенства. Вы нашли верхнее основание прямоугольной трапеции.
3
Длина основания AD является суммой длин двух отрезков AE и ED. AE = квадратный корень(f(2) - c*sinα); ED = c*cosα).Итак: AD = квадратный корень(f(2) - c*sinα) + c*cosα.Вы нашли нижнее основание прямоугольной трапеции.
4
Задача 2.Найдите основания BC и AD прямоугольной трапеции, если известна длина диагонали BD = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный треугольник CED. Найдите длины сторон CE и ED: CE = CD*sin(ADC) = c*sinα; ED = CD*cos(ADC) = c*cosα.
5
Рассмотрите прямоугольник ABCE. По свойству прямоугольника AB = CE = c*sinα.Рассмотрите прямоугольный треугольник ABD. По свойству прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Поэтому AD(2) = BD(2) - AB(2) = f(2) - c*sinα.Вы нашли нижнее основание прямоугольной трапеции AD = квадратный корень(f(2) - c*sinα).
6
По правилу прямоугольника BC = AE = AD - ED = квадратный корень(f(2) - c*sinα) - с*cosα.Вы нашли верхнее основание прямоугольной трапеции.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500