Совет 1: Как найти длину диагонали прямоугольника

Прямоугольником называют частный случай четырехугольника - замкнутой геометрической фигуры, составленной из четырех не лежащих на одной прямой отрезков, попарно соединяющих четыре вершины этого многоугольника. Отличительной особенностью прямоугольника являются углы в 90°, лежащие в каждой его вершине. Эта особенность значительно упрощает задачу нахождения длины диагонали фигуры, почти всегда сводя ее к теореме Пифагора.
Инструкция
1
Используйте теорему Пифагора для вычисления длины диагонали (D) прямоугольника, если из условий задачи известны ширина (W) и высота (H) фигуры. Диагональ и две стороны этого четырехугольника, образующие прямой угол напротив нее, создают прямоугольный треугольник, а теорема Пифагора гласит, что квадрат длины гипотенузы в таком треугольнике равен сумме квадратов длин его катетов. В данном случае гипотенузой является диагональ, а это значит, что для нахождения ее длины вам следует найти корень из суммы возведенных в квадрат длины и ширины прямоугольника: D=√(W²+H²).
2
Модифицируйте полученную формулу, если известна длина только одной стороны прямоугольника (например, H) и его площадь (S). Недостающую сторону в формуле, полученной на предыдущем шаге, можно заменить соотношением между площадью и длиной известной стороны. Подставьте это соотношение в формулу: D=√(H²+(S/H)²)=√(H²+S²)/H.
3
Аналогичным способом измените формулу из первого шага, если известны длина одной стороны (H) и длина периметра (P) прямоугольника. Периметр составляют по две длины каждой из сторон фигуры, а это значит, что вместо длины неизвестной стороны в формулу можно подставить выражение (P-2*H)/2 или P/2-H: D=√(H²+(P/2-H)²=√(H²+P²/4-P*H+H²)=√(2*H²+P²/4-P*H).
4
Если в прямоугольник можно вписать окружность, то этот прямоугольник является квадратом, а значит, длина любой его стороны равна диаметру этой окружности (d). Подставьте это значение в формулу из первого шага: D=√(d²+d²)=d*√2.
5
Без теоремы Пифагора можно обойтись в том случае, если известен диаметр описанной около прямоугольника окружности. Это самый простой вариант нахождения диагонали прямоугольника - длина диагонали совпадает с диаметром окружности.

Совет 2: Как найти стороны прямоугольника

Частный случай параллелограмма - прямоугольник – известен только в геометрии Евклида. У прямоугольника равны все углы, и каждый из них по отдельности составляет 90 градусов. Исходя из частных свойств прямоугольника, а также из свойств параллелограмма о параллельности противолежащих сторон можно найти стороны фигуры по заданным диагоналям и углу от их пересечения. Вычисление сторон прямоугольника основывается на дополнительных построениях и применении свойств получаемых фигур.
Инструкция
1
Постройте прямоугольник EFGH. Запишите известные данные: диагональ прямоугольника EG и угол α, полученный от пересечения двух равных диагоналей FH и EG. Постройте на рисунке диагонали и отметьте между ними угол α.
Как найти <b>стороны</b> <strong>прямоугольника</strong>
2
Буквой А отметьте точку пересечения диагоналей. Рассмотрите образованный построениями треугольник EFА. Согласно свойству прямоугольника его диагонали равны и делятся пополам точкой пересечения А. Вычислите значения FА и EА. Так как треугольник EFА является равнобедренным и его стороны EА и FА равны между собой и соответственно равны половине диагонали EG.
3
Далее вычислите первую сторону EF прямоугольника. Данная сторона является третьей неизвестной стороной рассматриваемого треугольника EFА. Согласно теореме косинусов по соответствующей формуле найдите сторону EF. Для этого подставьте в формулу косинусов полученные ранее значения сторон FА равна EА и косинус известного угла между ними α. Вычислите и запишите полученное значение EF.
Как найти <b>стороны</b> <strong>прямоугольника</strong>
4
Найдите вторую сторону прямоугольника FG. Для этого рассмотрите другой треугольник EFG. Он является прямоугольным, где известны гипотенуза EG и катет EF. Согласно теореме Пифагора найдите второй катет FG по соответствующей формуле.
Как найти <b>стороны</b> <strong>прямоугольника</strong>
5
В соответствии со свойствами прямоугольника его противолежащие ребра равны. Таким образом сторона GH равна найденной стороне EF, а HЕ = FG. Запишите в ответ все вычисленные стороны прямоугольника.

Совет 3: Как найти длину и ширину периметра

О том, что такое периметр, каждый из нас узнал еще в младших классах. нахождением сторон квадрата при известном периметре проблем обычно не возникает даже у тех, кто закончил школу давно и успел забыть курс математики. Однако решить аналогичную задачу в отношении прямоугольника или прямоугольного треугольника удается без подсказки не всем.
Инструкция
1
Как решить задачу по геометрии, в условии которой приведены только периметр и углы? Конечно, если речь идет о остроугольном треугольнике или многоугольнике, то такую задачу без знания длины одной из сторон решить невозможно. Однако, если речь идет о прямоугольном треугольнике или прямоугольнике, то по заданному периметру можно найти его стороны. Прямоугольник имеет длину и ширину. Если провести диагональ прямоугольника, можно обнаружить, что она разбивает прямоугольник на два прямоугольных треугольника. Диагональ является гипотенузой, а длина и ширина - катетами этих треугольников. У квадрата, являющегося частным случаем прямоугольника, диагональ является гипотенузой прямоугольного равнобедренного треугольника.
2
Предположим, что имеется прямоугольный треугольник со сторонами a, b и c, у которого один из углов равен 30 , а второй 60. На рисунке видно, что a = c*sin?, а b = c*cos?. Зная, что периметр любой фигуры, в том числе и треугольника, равен сумме всех его сторон, получаем:a+b+c=c*sin ?+c*cos+c=pИз этого выражения можно найти неизвестную сторону c, которая является гипотенузой для треугольника. Так как угол ? = 30, после преобразования получим:c*sin ?+c*cos ?+c=c/2+c*sqrt(3)/2+c=pОтсюда следует, что с=2p/[3+sqrt(3)]Соответственно a = c*sin ?=p/[3+sqrt(3)],b=c*cos ?=p*sqrt(3)/[3+sqrt(3)]
Как найти <strong>длину</strong> и <b>ширину</b> <em>периметра</em>
3
Как уже сказано выше, диагональ прямоугольника делит его на два прямоугольных треугольника с углами 30 и 60 градусов. Поскольку периметр прямоугольника равен p=2(a + b), ширину a и длину b прямоугольника можно найти, исходя из того, что диагональ является гипотенузой прямоугольных треугольников:a = p-2b/2=p[3- sqrt(3)]/2[3+sqrt (3)]
b= p-2a/2=p[1 +sqrt(3) ]/2[3+ sqrt(3)]Эти два уравнения выражены через периметр прямоугольника. По ним вычисляются длина и ширина этого прямоугольника с учетом получившихся углов при проведении его диагонали.
Видео по теме
Обратите внимание
Как найти длину прямоугольника,если известен периметр и ширина? Вычесть из периметра удвоенную ширину, тогда получим удвоенную длину. Потом делим её пополам, чтобы найти длину.
Совет полезен?
Еще из начальной школы многие помнят, как найти периметр любой геометрической фигуры: достаточно узнать длину всех ее сторон и найти их сумму.  Известно, что в такой фигуре, как прямоугольник, длины сторон равны попарно. Если ширина и высота прямоугольника имеют одинаковую длину, то он называется квадратом. Обычно длиной прямоугольника называют наибольшую из сторон, а шириной – наименьшую.
Источники:
  • что такое ширина периметра

Совет 4: Как найти диаметр, если известна окружность

Круг - это плоская геометрическая фигура, все точки которой находятся на одинаковом и отличном от нуля удалении от выбранной точки, которую называют центром окружности. Прямую, соединяющую любые две точки круга и проходящую через центр, называют его диаметром. Суммарная длина всех границ двухмерной фигуры, которую обычно называют периметром, у круга чаще обозначается как «длина окружности». Зная длину окружности можно вычислить и ее диаметр.
Инструкция
1
Используйте для нахождения диаметра одно из основных свойств окружности, которое заключается в том, что соотношение длины ее периметра к диаметру одинаково для абсолютно всех окружностей. Конечно, такое постоянство не осталось не отмеченным математиками, и эта пропорция давно уже получила собственное название - это число Пи (π - первая буква греческих слов «окружность» и «периметр»). Числовое выражение этой константы определяется длиной окружности, у которой диаметр равен единице.
2
Делите известную длину окружности на число Пи, чтобы вычислить ее диаметр. Так как это число является «иррациональным», то не имеет конечного значения - это бесконечная дробь. Округляйте число Пи в соответствии с точностью результата, которую вам необходимо получить.
3
Используйте какой-либо калькулятор, чтобы рассчитать длину диаметра, если сделать это в уме не получается. Например, можно воспользоваться тем, который встроен в поисковую систему Nigma или Google - он понимает математические операции, вводимые на «человеческом» языке. Например, если известная длина окружности составляет четыре метра, то для нахождения диаметра можно «по-человечески» попросить поисковик: «4 метра разделить на пи». Но если вы введете в поле поискового запроса, например, «4/пи», то поисковик поймет и такую постановку задачи. В любом случае ответом будет «1.27323954 метра».
4
Воспользуйтесь программным калькулятором Windows, если вам более привычны интерфейсы с обычными кнопками. Чтобы не искать ссылку на его запуск в глубинных уровнях главного меню системы, нажмите сочетание клавиш WIN + R, введите команду calc и нажмите клавишу Enter. Интерфейс этой программы очень незначительно отличается от обычных калькуляторов, поэтому операция деления длины окружности на число Пи вряд ли вызовет какие-либо затруднения.
Видео по теме

Совет 5: Как сделать из прямоугольника квадрат

В силу некоторых обстоятельств может возникнуть необходимость из листа прямоугольной формы сделать квадрат, например, во время изготовления многих поделок из бумаги в технике оригами. Но далеко не всегда под рукой есть карандаш и линейка. Однако существуют способы, благодаря которым можно получить квадрат, не имея ничего, кроме смекалки.
Вам понадобится
  • - прямоугольник;
  • - линейка;
  • - карандаш;
  • - ножницы.
Инструкция
1
Прямоугольник – это геометрическая фигура, у которой все четыре угла прямые, а пары сторон параллельны друг другу. Противоположные стороны прямоугольника по длине между собой одинаковы, а между парами - разные. Квадрат отличается от предыдущей фигуры только тем, что у него все четыре стороны одинаковы.
2
Для того чтобы сделать квадрат из прямоугольника, можно воспользоваться линейкой и карандашом. Например, стороны прямоугольника равны 30 см (длина) и 20 см (ширина). Тогда квадрат будет иметь стороны с меньшим значением, то есть 20 см. Отмерьте на верхней длинной стороне прямоугольника 20 см. Выполните то же действие, но только с нижней стороной. Соедините полученные точки с помощью линейки. В случае надобности отрежьте излишек, в результате чего получится квадрат со сторонами 20 см.
3
Сделать квадрат из прямоугольника можно даже в том случае, если отсутствуют чертежные принадлежности. Положите перед собой прямоугольник и согните один из его прямых углов (это может быть любой угол) строго пополам. Если поставить полученную фигуру на длинную сторону, то будет прямоугольная трапеция, визуально состоящая из треугольника и другого прямоугольника. Загните полученный прямоугольник на треугольник (последний будет двойным за счет сложенной бумаги), загладьте пальцами и отрежьте или аккуратно его оторвите. Разверните бумагу, которая и будет собой представлять квадрат. Из маленького оставшегося прямоугольника можно снова получить квадрат, только меньшего размера. Способы допустимо использовать те же самые.
4
Прямоугольник может иметь и несколько иные размеры, например, 40х20 см, то есть длина ровно в 2 раза превышает ширину. В этом случае возьмите линейку и отмерьте на длинной стороне 20 см (сверху и снизу), соедините полученные точки и разделите пополам. Получится два одинаковых квадрата. Если достоверно известно, что в прямоугольнике именно такое соотношении длины и ширины (2:1), то просто сложите геометрическую фигуру вдвое, после чего разрежьте. Кстати, чтобы без линейки убедиться, что соотношение действительно 2:1, для этого любой угол прямоугольника сложите пополам. Затем выполните то же действие, но только с другой стороны (симметрично первому углу). Если в результате всех этих манипуляций получился прямоугольный треугольник, значит соотношение сторон на самом деле 2:1.
Видео по теме
Источники:
  • как из треугольника сделать прямоугольник
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500