Совет 1: Медиана, высота и биссектриса и их свойства

Исследование треугольника занимало математиков на протяжении веков. Большая часть свойств и теорем, связанных с треугольниками, использует особые линии фигуры: медиану, биссектрису и высоту.
Медиана, высота и биссектриса и их свойства

Медиана и ее свойства


Медиана – это одна из основных линий треугольника. Этот отрезок и прямая, на которой он лежит, соединяет точку во главе угла треугольника с серединой противолежащей стороны этой же фигуры. В равностороннем треугольнике медиана является также биссектрисой и высотой.

Свойство медианы, которое существенно облегчит решение многих задач, заключается в следующем: если в треугольнике провести медианы из каждого угла, то все они, пересекаясь в одной точке, будет делиться в соотношении 2:1. Соотношение следует отсчитывать от вершины угла.

Медиана имеет свойство разделять все поровну. Например, любая медиана делит треугольник на два других, равных по своей площади. А если провести все три медианы, то в большом треугольнике получится 6 маленьких, также равных по площади. Такие фигуры (с одинаковой площадью) называются равновеликими.

Биссектриса


Биссектриса представляет собой луч, который начинается в вершине угла и делит этот же угол пополам. Точки, лежащие на данном луче, равноудалены от сторон угла. Свойства биссектрисы хорошо помогают в решении задач, связанных с треугольниками.

В треугольнике биссектрисой называют отрезок, который лежит на луче биссектрисы угла и соединяет вершину с противолежащей стороной. Точка пересечения со стороной делит ее на отрезки, отношение которых равно отношению прилежащих к ним сторонам.

Если в треугольник вписать окружность, то ее центр будет совпадать с точкой пересечения всех биссектрис данного треугольника. Это свойство имеет отражение и в стереометрии - там роль треугольника играет пирамида, а окружности - шар.

Высота


Также как медиана и биссектриса, высота в треугольнике в первую очередь связывают вершину угла и противолежащую сторону. Это связь проистекает в следующем: высота – это перпендикуляр, проведенный из вершины, к прямой, которая содержит в себе противолежащую сторону.

Если высота проведена в прямоугольном треугольнике, то, касаясь противоположной стороны, она делит весь треугольник на два других, которые в свою очередь подобны первому.

Нередко понятие перпендикуляра применяется в стереометрии, чтобы определить взаиморасположения прямых в разных плоскостях и расстояние между ними. В этом случае отрезок, выполняющий функцию перпендикуляра, должен иметь прямой угол с обеими прямыми. Тогда числовое значение данного отрезка будет показывать расстояние между двумя фигурами.

Совет 2 : Как называются стороны прямоугольного треугольника

Удивительными свойствами прямоугольных треугольников люди заинтересовались еще во времена античности. Многие из этих свойств были описаны древнегреческим ученым Пифагором. В Древней Греции появились и названия сторон прямоугольного треугольника.
Как называются стороны прямоугольного треугольника

Какой треугольник называют прямоугольным?


Есть несколько типов треугольников. У одних все углы острые, у других – один тупой и два острых, у третьих – два острых и прямой. По этому признаку каждый тип этих геометрических фигур и получил название: остроугольные, тупоугольные и прямоугольные. То есть, прямоугольным называется такой треугольник, у которого один из углов составляет 90°. Есть и другое определение, схожее с первым. Прямоугольным называется треугольник, у которого две стороны перпендикулярны.

Гипотенуза и катеты


У остроугольного и тупоугольного треугольников отрезки, соединяющие вершины углов, называются просто сторонами. У треугольника прямоугольного стороны имеют и другие названия. Те, которые прилегают к прямому углу, называются катетами. Сторона, противолежащая прямому углу, называется гипотенузой. В переводе с греческого слово «гипотенуза» означает «натянутая», а «катет» - «перпендикуляр».

Соотношения между гипотенузой и катетами


Стороны прямоугольного треугольника связаны между собой определенными соотношениями, которые значительно облегчают вычисления. Например, зная размеры катетов, можно вычислить длину гипотенузы. Это соотношение по имени открывшего его математика получило название теоремы Пифагора и выглядит оно так:

c2=a2+b2, где с – гипотенуза, a и b – катеты. То есть, гипотенуза будет равна квадратному корню из суммы квадратов катетов. Чтобы найти любой из катетов, достаточно из квадрата гипотенузы вычесть квадрат другого катета и извлечь из полученной разности квадратный корень.

Прилежащий и противолежащий катет


Начертите прямоугольный треугольник АСВ. Буквой С принято обозначать вершину прямого угла, А и В – вершины острых углов. Стороны, противолежащие каждому углу, удобно назвать а, b и с, по названиям лежащих напротив них углов. Рассмотрите угол А. Катет а для него будет противолежащим, катет b – прилежащим. Отношение противолежащего катета к гипотенузе называется синусом. Вычислить эту тригонометрическую функцию можно по формуле: sinA=a/c. Отношение прилежащего катета к гипотенузе называется косинусом. Вычисляется он по формуле: cosA=b/c.

Таким образом, зная угол и одну из сторон, можно по этим формулам вычислить другую сторону. Тригонометрическими соотношениями связаны и оба катета. Отношение противолежащего к прилежащему называется тангенсом, а прилежащего к противолежащему – котангенсом. Выразить эти соотношения можно формулами tgA=a/b или ctgA=b/a.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500