Совет 1: Как найти внутренний угол

Строительные работы, а также перепланировка квартиры и подготовка к ее ремонту требуют не только строительных навыков, но и познаний в математике, геометрии и пр. Так, часто бывает нужно найти внутренний угол треугольника.
Инструкция
1
Для нахождения внутреннего угла треугольника вспомните теорему о сумме углов треугольника.
Теорема: сумма углов треугольника равна 180°.
Из этой теоремы выделите пять следствий, которые могут помочь в расчете внутреннего угла.
1. Сумма острых углов прямоугольного треугольника равна 90°.
2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45°.
3. В равностороннем треугольнике каждый угол равен 60°.
4. В любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.
5. Внешний угол треугольника равен сумме двух внутренних углов.

Пример 1:
Найти углы треугольника АВС, зная, что угол С на 15° больше, а угол И на 30° меньше угла А.
Решение:
Обозначьте градусную меру угла А через Х, тогда градусная мера угла С равна Х+15°, а угол В равен Х-30°. Так как сумма внутренних углов треугольника равна 180°, то вы получите уравнение:
Х+(Х+15)+(Х-30)=180
Решая его, вы найдете Х=65°. Таким образом угол А равен 65°, угол В равен 35°, угол С равен 80°.
2
Поработайте с биссектрисой угла. В треугольнике АВС угол А равен 60°, угол В равен 80°. Биссектриса АD этого треугольника отсекает от него треугольник АСD. Попробуйте найти углы этого треугольника. Постройте график для наглядности.
Угол DAB равен 30°, так как AD – биссектриса угла А, угол ADC равен 30°+80°=110° как внешний угол треугольника ABD (следствие 5), угол С равен 180°-(110°+30°)=40° по теореме о сумме углов треугольника ACD.
Как найти внутренний угол
3
Еще для нахождения внутреннего угла вы можете использовать равенство треугольников:
Теорема 1: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

На основе Теоремы 1 устанавливается Теорема 2.
Теорема 2: Сумма любых двух внутренних углов треугольника меньше 180°.
Из предыдущей теоремы вытекает Теорема 3.

Теорема 3: Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.
Также для вычисления внутреннего угла треугольника можно использовать теорему косинусов, но только в том случае, если известны все три стороны.
4
Вспомните теорему косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a2=b2+c2-2bc cos A
или
b2=a2+c2- 2ac cos B
или
с2=a2+b2-2ab cos C

Совет 2: Как найти косинус внешнего угла

Любой плоский угол можно достроить до развернутого, если продлить за вершину одну из его сторон. При этом другая сторона будет делить развернутый угол на два. Угол, образуемый второй стороной и продолжением первой, называется смежным, а когда речь идет о многоугольниках, его называют еще и внешним. Тот факт, что сумма внешнего и внутреннего углов по определению равна величине развернутого угла, позволяет вычислять тригонометрические функции по известным соотношениям параметров многоугольников.
Инструкция
1
Зная результат вычисления косинуса внутреннего угла (α) вы будете знать модуль косинуса внешнего (α₀). Единственная операция, которую вам нужно произвести с этой величиной - изменить ее знак, то есть умножить на -1: cos(α₀) = -1*cos(α).
2
Если известна величина внутреннего угла (α), для вычисления косинуса внешнего (α₀) можно использовать способ, описанный в предыдущем шаге - найти его косинус, а затем поменять знак. Но можно сделать и по-другому - сразу вычислить косинус внешнего угла, отняв для этого величину внутреннего от 180°: cos(α₀) = cos(180°-α). Если величина внутреннего угла приведена в радианах, формулу нужно преобразовать к такому виду: cos(α₀) = cos(π-α).
3
В правильном многоугольнике для вычисления величины внешнего угла (α₀) не нужно знать никаких параметров, кроме количества вершин (n) этой фигуры. На это число разделите 360° и найдите косинус полученного числа: cos(α₀) = cos(360°/n). Для вычислений в радианах на число вершин надо делить удвоенное число Пи, а формула должна приобрести такой вид: cos(α₀) = cos(2*π/n).
4
В прямоугольном треугольнике косинус внешнего угла при вершине, лежащей напротив гипотенузы, всегда равен нулю. Для двух других вершин эту величину можно рассчитать, зная длины гипотенузы (c) и катета (a), которые образуют эту вершину. Никаких тригонометрических функций при этом вычислять не требуется, просто разделите длину меньшей стороны на длину большей и поменяйте знак результата: cos(α₀) = -a/c.
5
Если известны длины двух катетов (a и b), тоже можно обойтись в расчетах без тригонометрических функций, но формула будет несколько сложней. Дробь, в знаменателе которой стоит длина стороны, примыкающей к вершине внешнего угла, а в числителе - длина другого катета, определяет тангенс внутреннего угла. Зная тангенс можно вычислить косинус внутреннего угла: √(1/(1+a²/b²). Этим выражением замените косинус в правой части формулы из первого шага: cos(α₀) = -1*√(1/(1+a²/b²).

Совет 3: Как найти внешний угол треугольника

Внешний угол треугольника является смежным внутреннему углу фигуры. В сумме эти углы при каждой из вершин треугольника составляют 180° и представляют развернутый угол.
Инструкция
1
Из названия очевидно, что внешний угол лежит за пределами треугольника. Чтобы представить себе внешний угол, продлите сторону фигуры за вершину. Угол между продолжением стороны и второй стороной треугольника, выходящей из этой вершины, и будет внешним для угла треугольника при данной вершине.
2
Очевидно, что острому углу треугольника соответствует тупой внешний угол. Для тупого угла внешний угол — острый, а внешний угол прямого угла — прямой. Два угла с общей стороной и сторонами, принадлежащими одной прямой, являются смежными и в сумме составляют 180°. Если угол треугольника α известен по условию, то смежный с ним внешний угол β определяется так:
β=180°-α.
3
Если угол α не задан, но известны другие два угла треугольника, то их сумма равна величине угла, внешнего по отношению к углу α. Это утверждение следует из того, что сумма всех углов треугольника равна 180°. В треугольнике внешний угол больше внутреннего угла, не смежного с ним.
4
Если градусная мера угла треугольника не задана, но из соотношения сторон известны тригонометрические зависимости, то по этим данным также можно найти внешний угол:
Sinα = Sin (180°-α)
Cosα = -Cos (180°-α)
tgα =- tg (180°-α).
5
Внешний угол треугольника можно определить, если не задан ни один внутренний угол, а известны только стороны фигуры. Из связей между элементами треугольника определите одну из тригонометрических функций внутреннего угла. Вычислите соответствующую функцию искомого внешнего угла и по тригонометрическим таблицам Брадиса найдите его величину в градусах.

Например, из формулы площади S=(b*c*Sinα)/2 определите Sinα, а затем внутренний и внешний угол в градусной мере. Или определите Cosα из теоремы косинусов a²=b²+c²-2bc*Cosα.
Источники:
  • вычислить внутренние углы треугольника
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше