Совет 1: Как найти угол, если известны стороны

Многоугольником называется фигура на плоскости, состоящая из трёх и более сторон, которые пересекаются в трёх и более точках. Многоугольник называется выпуклым, если каждый его угол меньше 180º. Обычно, в качестве многоугольников рассматривают именно выпуклые многоугольники. Для нахождения углов многоугольника нужно иметь минимально необходимый набор исходных данных. Пусть для многоугольника известны длины всех его сторон.
Как найти угол, если известны стороны
Инструкция
1
Многоугольник называется правильным, если его стороны равны между собой, а так же все углы равны между собой.
Если заранее известно, что многоугольник является правильным, то углы можно высчитать по формуле
?? = 180? * (n - 2)/n, где n – количество сторон многоугольника.
Например, в случае правильного восьмиугольника
?? = 180? * (8 - 2)/8 = 135?
Как найти угол, если известны <b>стороны</b>
2
Для неправильного треугольника с известными сторонами, углы можно рассчитать по теореме косинусов, например, для угла ?? в приведённом рисунке формула примет вид
cos?? = (b? + c? - a?) / 2 • b • c
Как найти угол, если известны <b>стороны</b>
3
Для нахождения углов неправильных многоугольников с количеством сторон больше 3 наличие длин сторон не является достаточным условием.

Совет 2 : Как найти углы треугольника по длинам его сторон

Есть несколько вариантов нахождения величин всех углов в треугольнике, если известны длины трех его сторон. Один из способов заключается в использовании двух разных формул вычисления площади треугольника. Для упрощения расчетов можно также применить теорему синусов и теорему о сумме углов треугольника.
Как найти углы треугольника по длинам его сторон
Инструкция
1
Воспользуйтесь, например, двумя формулами вычисления площади треугольника, в одной из которых задействованы только три его известных стороны (формула Герона), а в другой - две стороны и синус угла между ними. Используя во второй формуле разные пары сторон, вы сможете определить величины каждого из углов треугольника.
2
Решите задачу в общем виде. Формула Герона определяет площадь треугольника, как квадратный корень из произведения полупериметра (половины от суммы всех сторон) на разницы между полупериметром и каждой из сторон. Если заменить периметр суммой сторон, то формулу можно записать в таком виде: S=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c).C другой стороны площадь треугольника можно выразить как половину произведения двух его сторон на синус угла между ними. Например, для сторон a и b с углом γ между ними эту формулу можно записать так: S=a∗b∗sin(γ). Замените левую часть равенства формулой Герона: 0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c)=a∗b∗sin(γ). Выведите из этого равенства формулу для синуса угла γ: sin(γ)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (a∗b∗)
3
Аналогичные формулы для двух других углов:
sin(α)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (b∗c∗)
sin(β)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (a∗c∗)Вместо этих формул можно воспользоваться теоремой синусов, из которой вытекает, что соотношения сторон и синусов противолежащих им углов в треугольнике равны. То есть, вычислив в предыдущем шаге синус одного из углов, можно найти синус другого угла по более простой формуле: sin(α)=sin(γ)∗a/c. А исходя из того, что сумма углов в треугольнике равна 180°, третий угол можно рассчитать еще проще: β=180°-α-γ.
4
Используйте, например, стандартный калькулятор Windows для нахождения величин углов в градусах после того, как по формулам рассчитаете значения синусов этих углов. Чтобы это сделать, применяйте тригонометрическую функцию, обратную синусу - арксинус.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500