Совет 1: Как найти боковую сторону прямоугольной трапеции

У каждой трапеции имеются две боковые стороны и два основания. Для того, чтобы узнать площадь, периметр или другие параметры этой фигуры, нужно знать хотя бы одну из боковых сторон. Также нередко по условиям задач требуется находить боковую сторону прямоугольной трапеции.
Инструкция
1
Начертите прямоугольную трапецию ABCD. Боковые стороны этой фигуры обозначьте, соответственно, как AB и DC. Первая боковая сторона DC совпадает с высотой трапеции. Она перпендикулярна двум основаниям прямоугольной трапеции.
Существует несколько способов нахождения боковых сторон. Так например, если в задаче дана вторая боковая сторона BA и угол ABH=60, то первую высоту найдите наиболее простым из способов, проведя высоту BH:
BH=AB*sinα
Поскольку BH=CD, то СD=AB*sinα=√3AB/2
2
Если, наоборот, дана сторона трапеции, обозначенная, как CD, а требуется найти ее же сторону AB, такая задача решается несколько иным образом. Так как BH=CD, и при этом, BH представляет собой катет треугольника ABH, можно сделать вывод, что сторона AB равна:
AB=BH/sinα=2BH/√3
3
Задачу можно решить и в том случае, если значения углов неизвестны, при условии, что даны два основания и боковая сторона AB. Однако, в этом случае можно найти только сторону CD, которая является высотой трапеции. Первоначально, зная значения оснований, найдите длину отрезка AH. Он равен разности большего и меньшего оснований, поскольку известно, что BH=CD:
AH=AD-BC
Затем, используя теорему Пифагора, найдите высоту BH, равную стороне CD:
BH=√AB^2-AH^2
4
Если у прямоугольной трапеции есть диагональ BD и угол 2α, как показано на рисунке 2, то сторону AB можно найти также по теореме Пифагора. Для этого, сначала вычислите длину основания AD:
AD=BD*cos2α
Затем найдите сторону AB следующим образом:
AB=√BD^2-AD^2
После этого докажите подобие треугольников ABD и BCD. Так как у этих треугольников одна общая сторона - диагональ, и при этом, два угла равны, как видно из рисунка, то эти фигуры подобны. На основании этого доказательства найдите вторую боковую сторону. Если известно верхнее основание и диагональ, то сторону найдите обычным образом с использованием стандартной теоремы косинусов:
c^2=а^2+b^2-2ab cos α, где а, b, с - стороны треугольника, α - угол между сторонами а и b.

Совет 2: Как найти стороны трапеции

Трапеция представляет собой обычный четырехугольник, обладающий добавочным свойством параллельности двух своих сторон, которые называются основаниями. Поэтому этот вопрос, во-первых, следует понимать с точки зрения отыскания боковых сторон. Во-вторых, для задания трапеции требуется не менее четырех параметров.
Инструкция
1
В данном конкретном случае самым общим ее заданием (не избыточным) следует считать условие: даны длины верхнего и нижнего оснований, а также вектор одной из диагоналей. Индексы координат (дабы написание формул не было похоже на умножение) будут выделены курсивом).Для графического изображения процесса решения постройте рисунок 1.
2
Пусть в представленной задаче рассматривается трапеция AВCD. В ней даны длины оснований ВC=b и АD=a, а также диагональ АС, заданная вектором p(px, py). Его длина (модуль) |p|=p=sqrt(((px)^2 +(py)^2). Так как вектор задается еще и углом наклона к оси (в задаче - 0X), то обозначьте его через ф (угол CAD и параллельный ему угол ACB). Далее необходимо применить известную со школьной программы теорему косинусов. При этом искомую величину (длины CD или АВ при составлении уравнения обозначьте через х).
3
Рассмотрите треугольник AСD. Здесь длина стороны АС равна модулю вектора |p|=p. AD=b. По теореме косинусов x^2=p^2+ b^2-2pbcosф. x=CD=sqrt(p^2+ b^2-2pbcosф)=CD.
4
Теперь рассмотрите треугольник ABC. Длина стороны АС равна модулю вектора |p|=p. BC=a. По теореме косинусов x^2=p^2+ a^2-2pacosф. х=AB=sqrt(p^2+ a^2-2pacosф).
5
Хотя квадратное уравнение и имеет два корня, в данном случае необходимо выбрать лишь те, где перед корнем из дискриминанта стоит знак плюс, при этом заведомо исключив отрицательные решения. Это обусловлено тем, что длина стороны трапеции должна быть заведомо положительной.
6
Итак, искомые решения в виде алгоритмов решения данной задачи получены. Чтобы представить числовое решение остается подставить данные из условия. При этом cosф вычисляется, как направляющий вектор (орт) вектора p=px/sqrt(px^2+py^2).
Обратите внимание
Конечно, возможны и другие исходные данные, например задание двух диагоналей и высоты трапеции. Но в любом случае вам потребуется информация о расстоянии между основаниями трапеции.
Источники:
  • стороны трапеции формула

Совет 3: Как найти основания прямоугольной трапеции

Математическая фигура с четырьмя углами называется трапецией, если пара противоположных ее сторон параллельна, а другая пара - нет. Параллельные стороны называют основаниями трапеции, две другие - боковыми. В прямоугольной трапеции один из углов при боковой стороне - прямой.
Инструкция
1
Задача 1.Найдите основания BC и AD прямоугольной трапеции, если известна длина диагонали AC = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный треугольник CED. Известны гипотенуза c и угол между гипотенузой и катетом EDC. Найдите длины сторон CE и ED: по формуле угла CE = CD*sin(ADC); ED = CD*cos(ADC). Итак: CE = c*sinα; ED=c*cosα.
2
Рассмотрите прямоугольный треугольник ACE. Гипотенуза AC и катет CE вам известны, найдите сторону AE по правилу прямоугольного треугольника: сумма квадратов катетов равна квадрату гипотенузы. Итак: AE(2) = AC(2) - CE(2) = f(2) - c*sinα. Вычислите квадратный корень из правой части равенства. Вы нашли верхнее основание прямоугольной трапеции.
3
Длина основания AD является суммой длин двух отрезков AE и ED. AE = квадратный корень(f(2) - c*sinα); ED = c*cosα).Итак: AD = квадратный корень(f(2) - c*sinα) + c*cosα.Вы нашли нижнее основание прямоугольной трапеции.
4
Задача 2.Найдите основания BC и AD прямоугольной трапеции, если известна длина диагонали BD = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный треугольник CED. Найдите длины сторон CE и ED: CE = CD*sin(ADC) = c*sinα; ED = CD*cos(ADC) = c*cosα.
5
Рассмотрите прямоугольник ABCE. По свойству прямоугольника AB = CE = c*sinα.Рассмотрите прямоугольный треугольник ABD. По свойству прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Поэтому AD(2) = BD(2) - AB(2) = f(2) - c*sinα.Вы нашли нижнее основание прямоугольной трапеции AD = квадратный корень(f(2) - c*sinα).
6
По правилу прямоугольника BC = AE = AD - ED = квадратный корень(f(2) - c*sinα) - с*cosα.Вы нашли верхнее основание прямоугольной трапеции.

Совет 4: Как найти площадь трапеции, если известны диагонали

Трапецией называется четырехугольник, две стороны которого друг другу параллельны. Основная формула площади трапеции - произведение полусуммы основания на высоту. В некоторых геометрических задачах на нахождение площади трапеции использовать основную формулу невозможно, но даны длины диагоналей. Как быть?
Инструкция
1
Общая формула

Используйте общую формулу площади для произвольного четырехугольника:

S=1/2•AC•BD•sinφ, где AC и BD - длины диагоналей, φ - угол между диагоналями.
2
Если требуется доказать или вывести эту формулу, разбейте трапецию на 4 треугольника. Запишите формулу площади каждого из треугольников (1/2 произведения сторон на синус угла между ними). Берите тот угол, который образуется пересечением диагоналей. Далее используйте свойство аддитивности площади: запишите площадь трапеции как сумму площадей образующих ее треугольников. Сгруппируйте слагаемые, вынеся множитель 1/2 и синус за скобки (учитывая, что sin(180°-φ)=sinφ). Получите исходную формулу площади четырехугольника.

Вообще, полезно рассматривать площадь трапеции как сумму площадей составляющих ее треугольников. Зачастую это является ключом к решению задачи.
3
Важные теоремы

Теоремы, которые могут понадобиться, если числовое значение угла между диагоналями не задано в явном виде:

1) Сумма всех углов треугольника равна 180°.

В общем случае, сумма всех углов выпуклого многоугольника равна 180°•(n-2), где n - число сторон многоугольника (равное числу его углов).

2) Теорема синусов для треугольника со сторонами a, b и c:

a/sinA=b/sinB=c/sinC, где A, B, C - углы, лежащие напротив сторон a, b, c соответственно.

3) Теорема косинусов для треугольника со сторонами a, b и c:

c²=a²+b²-2•a•b•cosα, где α - угол треугольника, образованный сторонами a и b. Теорема косинусов имеет своим частным случаем знаменитую теорему Пифагора, т.к. cos90°=0.
4
Особые свойства трапеции - равнобокость

Обратите внимание на свойства трапеции, указанные в условии задачи. Если дана равнобедренная трапеция (боковые стороны равны), используйте то ее свойство, что диагонали в ней равны.
5
Особые свойства трапеции - наличие прямого угла

Если дана прямоугольная трапеция (один из углов трапеции прямой), рассмотрите прямоугольные треугольники, находящиеся внутри трапеции. Вспомните, что площадь прямоугольного треугольника равна половине произведения его сторон, образующих прямой угол, т.к. sin90°=1.
Источники:
  • формула диагонали трапеции

Совет 5: Как найти меньшую сторону трапеции

Меньшим основанием трапеции является одна из ее параллельных сторон, имеющая минимальную длину. Рассчитать эту величину можно несколькими способами, используя те или иные данные.
Вам понадобится
  • - калькулятор.
Инструкция
1
Если известны две длины - большого основания трапеции и средней линии - используйте для расчета наименьшего основания свойство трапеции. Согласно нему, средняя линия трапеции тождественна полусумме оснований. В этом случае наименьшее основание будет равно разности удвоенной длины средней линии и длины большого основания данной фигуры.
2
Если известны такие параметры трапеции, как площадь, высота, длина большого основания, то расчет наименьшего основания данной фигуры ведите на основе формулы площади трапеции. В этом случае конечный результат получите путем вычитания из разности частного удвоенной площади и высоты такого параметра, как длина большого основания трапеции.
3
Длину наименьшей боковой стороны в прямоугольной трапеции высчитывайте по другой методике. Этот параметр будет равен произведению длины второй боковой стороны и синуса острого угла, прилежащего к ней. В тех же случаях, когда величина угла неизвестна, наименьшую боковую сторону приравнивайте к высоте трапеции и высчитывайте по теореме Пифагора. Наименьшую боковую сторону в прямоугольной трапеции находите с помощью теоремы косинусов: с²=a²+b²-2ab*cosα; где а, b, с представляют собой стороны треугольника; α является углом между сторонами а и b.
Видео по теме
Обратите внимание
Чтобы не ошибиться в вычислениях, значения синусов и косинусов берите из тригонометрических таблиц.
Полезный совет
Если трапеция является остроугольной фигурой, то ее наименьшее основание высчитывайте путем вычитания из разности длины большого основания такой величины, как произведение высоты на сумму котангенсов углов при большом основании.

Для тупоугольной фигуры малое основание высчитывайте путем вычитания из разности длины большого основания такой величины, как произведение высоты на сумму разность котангенсов острого и тупого углов при большом основании.
Источники:
  • Трапеция (задачи про основания)
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше