Совет 1: Как найти длину гипотенузы

Гипотенуза – наибольшая сторона прямоугольного треугольника. Располагается она напротив угла в девяносто градусов и рассчитывается, как правило, по известной с седьмого класса теореме древнегреческого ученого – Пифагора. Звучит она так: «квадрат гипотенузы, равен сумме квадратов катетов». Выглядит угрожающе, но решается просто. Есть и другие методы нахождения длины данной стороны треугольника.
Вам понадобится
  • Таблица Брадиса, калькулятор.
Инструкция
1
Если необходимо рассчитать гипотенузу по теореме Пифагора, воспользуйтесь следующим алгоритмом:- Определите в треугольнике, какие стороны являются катетами, а какая – гипотенузой. Две стороны, образующие угол в девяносто градусов и есть катеты, оставшаяся третья сторона треугольника – гипотенуза. (см рисунок)- Возведите во вторую степень каждый катет данного треугольника, то есть умножьте их значение на себя. Пример 1. Пусть надо вычислить гипотенузу, если один катет в треугольнике – 12 см, а другой – 5 см. Во-первых, квадраты катетов равны: 12*12=144 см и 5*5 = 25 см.- Далее определите сумму квадратов катетов. Определенное число является квадратом гипотенузы, значит нужно избавиться от второй степени числа, чтобы найти длину этой стороны треугольника. Для этого извлеките из-под квадратного корня значение суммы квадратов катетов. Пример 1. 144+25=169. Корень квадратный из 169 будет 13. Следовательно, длина данной гипотенузы равна 13 см.
2
Другой способ вычисления длины гипотенузы заключается в терминологии синуса и косинуса углов в треугольнике. По определению: синус угла альфа - это отношение противолежащего катета к гипотенузе. То есть, глядя на рисунок, sin a = CВ / АВ. Отсюда, гипотенуза АВ = СВ / sin a.Пример 2. Пусть угол а равен 30 градусам, а противолежащий ему катет - 4 см. Нужно найти гипотенузу. Решение: АВ = 4 см/ sin 30 = 4 см / 0,5 = 8 см. Ответ: длина гипотенузы равна 8 см.
3
Аналогичный способ нахождения гипотенузы из определения косинуса угла. Косинус угла - отношение прилежащего к нему катета и гипотенузы. То есть, cos а = АС/АВ, отсюда АВ = АС/cos а. Пример 3. В треугольнике АВС, АВ - гипотенуза, угол ВАС равен 60 градусам, катет АС - 2 см. Найти АВ.
Решение: АВ = АС/cos 60 = 2/0,5 = 4 см. Ответ: гипотенуза составляет 4 см в длине.

Совет 2: Как найти длину гипотенузы в прямоугольном треугольнике

Гипотенузой называют самую длинную из сторон в прямоугольном треугольнике, поэтому не удивительно, что с греческого языка это слово переводится как «натянутая». Эта сторона всегда лежит напротив угла в 90°, а стороны, образующие этот угол называют катетами. Зная длины этих сторон и величины острых углов в разных комбинациях этих значений можно вычислить и длину гипотенузы.
Инструкция
1
Если известны длины обоих катетов треугольника (А и В), то используйте для нахождения длины гипотенузы (С) самый, пожалуй, известный на нашей планете математический постулат - теорему Пифагора. Он гласит, что квадрат длины гипотенузы равен сумме квадратов длин катетов, из чего вытекает, что вам следует вычислить квадратный корень из суммы возведенных в квадрат длин двух известных сторон: С=√(А²+В²). Например, если длина одного катета равна 15 сантиметрам, а другого - 10 сантиметрам, то длина гипотенузы составит приблизительно 18,0277564 сантиметра, так как √(15²+10²)=√(225+100)= √325≈18,0277564.
2
Если известна длина только одного из катетов (А) в прямоугольном треугольнике, а также величина угла, лежащего напротив него (α), то длину гипотенузы (С) можно определить с помощью одной из тригонометрических функций - синуса. Для этого разделите длину известной стороны на синус известного угла: С=А/sin(α). Например, если длина одного из катетов равна 15 сантиметрам, а величина угла в противоположной ему вершине треугольника составляет 30°, то длина гипотенузы будет равна 30 сантиметрам, так как 15/sin(30°)=15/0,5=30.
3
Если в прямоугольном треугольнике известна величина одного из острых углов (α) и длина прилегающего к нему катета (В), то для вычисления длины гипотенузы (С) можно использовать другую тригонометрическую функцию - косинус. Вам следует разделить длину известного катета на косинус известного угла: С=В/ cos(α). Например, если длина этого катета равна 15 сантиметрам, а величина острого угла, к нему прилегающего, составляет 30°, то длина гипотенузы составит приблизительно 17,3205081 сантиметров, так как 15/cos(30°)=15/(0,5*√3)=30/√3≈17,3205081.

Совет 3: Как находить длину

Длиной принято обозначать расстояние между двумя точками какого-либо отрезка. Это может быть прямая, ломаная или замкнутая линия. Вычислить длину можно довольно простым путем, если знать некоторые другие показатели отрезка.
Инструкция
1
Если вам нужно найти длину стороны квадрата, то это не составит труда, если вам известна его площадь S. В связи с тем, что все стороны квадрата имеют одинаковую длину, вычислить величину одной из них можно по формуле: a = √S.
2
В случае, когда требуется просчитать длину стороны прямоугольника, воспользуйтесь значениями его площади s и длины другой стороны b. Из формулы a=S/b вы получите искомое значение.
3
Чтобы определить длину окружности, то есть замкнутой линии, которая образует круг, воспользуйтесь значениями: r - ее радиусом и D - диаметром. Диаметр можно вычислить, умножив радиус окружности на 2. Известные вам значения подставьте в формулу определения длины окружности: C=2πr=πD, где π=3,14.
4
Для вычисления длины обычного отрезка воспользуйтесь методом эксперимента. То есть возьмите линейку и измеряйте.
5
Для того чтобы вычислить длину стороны такой фигуры, как треугольник, вам понадобятся размеры двух других сторон, а также величины углов. Если вы имеете дело с прямоугольным треугольником, и один из его углов равен 60 градусам, то величину его катета можно определить по формуле a=c*cosα, где c - гипотенуза треугольника, а α - угол между гипотенузой и катетом.
6
Помимо этого, если вы располагаете такими известными величинами, как высота b и площадь S треугольника, то длину стороны, которая является основанием, можно узнать благодаря формуле a=2√S/√√b.
7
Что касается правильного многоугольника, то длину его стороны можно просчитать, руководствуясь формулой an=2R*sin(α/2)=2r*tg(α/2), где R - радиус описанной окружности, r - радиус вписанной окружности, n - количество углов.
8
Если вы хотите вычислить длину равносторонней фигуры, вокруг которой описана окружность, то сделать это можно по формуле an=R√3, где R - радиус окружности, n - количество углов фигуры.
Видео по теме
Полезный совет
При нахождении значения синуса или косинуса угла воспользуйтесь либо таблицей синусов и косинусов, либо таблицей Брадиса.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше