Совет 1: Как найти сторону треугольника, зная сторону и угол

В общем случае знания длины одной стороны и одного угла треугольника недостаточно для определения длины другой стороны. Этих данных может быть достаточно для определения сторон прямоугольного треугольника, а также равнобедренного треугольника. В общем же случае необходимо знать еще один параметр треугольника.
Как найти сторону треугольника, зная сторону и угол
Вам понадобится
  • Стороны треугольника, углы треугольника
Инструкция
1
Для начала можно рассмотреть частные случаи и начать со случая прямоугольного треугольника. Если известно, что треугольник прямоугольный и известен один из его острых углов, то по длине одной из сторон можно найти и лругие стороны треугольника.

Для нахождения длины других сторон необходимо знать, какая сторона треугольника задана - гипотенуза или какой-то из катетов. Гипотенуза лежит против прямого угла, катеты образуют прямой угол.

Рассмотрите прямоугольный треугольник ABC с прямым углом ABC. Пусть задана его гипотенуза AC и, например, острый угол BAC. Тогда катеты треугольника будут равны: AB = AC*cos(BAC) (прилежащий катет к углу BAC), BC = AC*sin(BAC) (катет, противолежащий углу BAC).
2
Пусть теперь задан тот же угол BAC и, например, катет AB. Тогда гипотенуза AC этого прямоугольного треугольника равна: AC = AB/cos(BAC) (соответственно, AC = BC/sin(BAC)). Другой катет BC находится по формуле BC = AB*tg(BAC).
3
Другой частный случай - если треугольник ABC равнобедренный (AB = AC). Пусть задано основание BC. Если задан угол BAC, то боковые стороны AB и AC можно найти по формуле: AB = AC = (BC/2)/sin(BAC/2).

Если задан угол при основании ABC или ACB, то AB = AC = (BC/2)/cos(ABC).
4
Пусть задана одна из боковых сторон AB или AC. Если известен угол BAC, то BC = 2*AB*sin(BAC/2). Если известен угол ABC или угол ACB при основании, то BC = 2*AB*cos(ABC).
5
Теперь можно рассмотреть общий случай треугольника, когда длины одной стороны и одного угла недостаточно для нахождения длины другой стороны.

Пусть в треугольнике ABC задана сторона AB и один из прилежащих к ней углов, например, угол ABC. Тогда, зная еще сторону BC, по теореме косинусов можно найти сторону AC. Она будет равна: AC = sqrt((AB^2)+(BC^2)-2*AB*BC*cos(ABC))
6
Пусть теперь известна сторона AB и противолежащий ей угол ACB. Пусть также известен, например, угол ABC. По теореме синусов AB/sin(ACB) = AC/sin(ABC). Следовательно, AC = AB*sin(ABC)/sin(ACB).
Ваши деньги должны работать на вас!
вклад на выгодных условиях
Стабильный доход и уверенность в завтрашнем дне - это то, что вы получите, сделав вклад на самых выгодных для себя условиях.
Возможность вернуть до 260 000 рублей
Если вы решили взять ипотеку
Каждый россиянин имеет право вернуть часть уплаченных налогов за покупку жилья.
Карта с большими бонусами
Дебетовая карта
Возвращается до 10% от стоимости покупок. Выгодна при крупных тратах.
Настроить автоплатежи просто
настройка автоплатежей за пару минут
В мобильном приложении Сбербанка все ваши платежи будут происходить в срок и без вашего участия.

Совет 2: Как найти сторону треугольника

Сторона треугольника – это прямая, ограниченная его вершинами. Всего их у фигуры три, это число определяет количество практически всех графических характеристик: угла, медианы, биссектрисы и т.д. Чтобы найти сторону треугольника, следует внимательно изучить начальные условия задачи и определить, какие из них могут стать основными или промежуточными величинами для расчета.
Как найти сторону треугольника
Инструкция
1
Стороны треугольника, как и других многоугольников, имеют собственные названия: боковые стороны, основание, а также гипотенуза и катеты у фигуры с прямым углом. Это облегчает расчеты и формулы, делая их более очевидными даже если треугольник произвольный. Фигура графическая, поэтому ее всегда можно расположить так, чтобы сделать решение задачи более наглядным.
2
Стороны любого треугольника связаны между собой и другими его характеристиками различными соотношениями, которые помогают вычислить требуемую величину в одно или несколько действий. При этом чем сложнее задача, тем длиннее последовательность шагов.
3
Решение упрощается, если треугольник стандартный: слова «прямоугольный», «равнобедренный», «равносторонний» сразу выделяют определенную взаимосвязь между его сторонами и углами.
4
Длины сторон в прямоугольном треугольнике связаны между собой теоремой Пифагора: сумма квадратов катетов равна квадрату гипотенузы. А углы, в свою очередь, связаны со сторонами теоремой синусов. Она утверждает равенство отношений между длинами сторон и тригонометрической функцией sin противолежащего угла. Впрочем, это верно для любого треугольника.
5
Две стороны равнобедренного треугольника равны между собой. Если их длина известна, вполне достаточно еще только одной величины, чтобы найти третью. Например, пусть известна высота, проведенная к ней. Этот отрезок делит третью сторону на две равные части и выделяет два прямоугольных треугольниках. Рассмотрев один из них, по теореме Пифагора найдите катет и умножьте на 2. Это и будет длина неизвестной стороны.
6
Сторону треугольника можно найти через другие стороны, углы, длины высоты, медианы, биссектрисы, величину периметра, площади, радиус вписанной окружности и т.д. Если нельзя сразу применить одну формулу, то произведите ряд промежуточных вычислений.
7
Рассмотрите пример: найдите сторону произвольного треугольника, зная медиану ma=5, проведенную к ней, и длины двух других медиан mb=7 и mc=8.
8
РешениеЗадача предполагает использование формул для медианы. Найти нужно сторону а. Очевидно, следует составить три уравнения с тремя неизвестными.
9
Запишите формулы для всех медиан:ma = 1/2•√(2•(b² + c²) – a²) = 5;mb = 1/2•√(2•(a² + c²) – b²) = 7;mc = 1/2•√(2•(a² + b²) – c²) = 8.
10
Выразите c² из третьего уравнения и подставьте ее во второе:c² = 256 – 2•a² – 2•b² b² = 20 → c² = 216 – a².
11
Возведите обе стороны первого уравнения в квадрат и найдите a, введя выраженные величины:25 = 1/4•(2•20 + 2•(216 – a²) – a²) → a ≈ 11,1.
Источники:
  • стороны треугольника это
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500