Совет 1: Как найти боковую сторону равнобедренного треугольника, если дано основание

Треугольник, который имеет две равные по длине стороны, называют равнобедренным. Эти стороны считаются боковыми, а третью именуют основанием. Одно из важных свойств равнобедренного треугольника: углы, противолежащие его равным сторонам, равны между собой.
Как найти боковую сторону равнобедренного треугольника, если дано основание
Вам понадобится
  • - таблицы Брадиса;
  • - калькулятор;
  • - линейка.
Инструкция
1
Обозначьте стороны и углы равнобедренного треугольника. Пусть основание будет b, боковая сторона a, углы между боковой стороной и основанием α, угол, противолежащий основанию β, высота h.
2
Найдите боковую сторону с помощью теоремы Пифагора, которая гласит, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов – с^2=а^2+b^2. Если у равнобедренного треугольника помимо основания известна высота, то по свойствам равнобедренного треугольника она является его медианой и делит геометрическую фигуру на два равных прямоугольных треугольника.
3
Подставьте в уравнение нужные значения. Итак, в данном случае получится: а^2 = (b/2)^2+h^2. Решите уравнение: а = √(b/2)^2+h^2. Другими словами, боковая сторона равна квадратному корню, извлеченному из суммы половины основания, возведенного в квадрат, и высоты, которая также взята в квадрате.
4
Если равнобедренный треугольник – прямоугольный, углы при его основании равны 45°. Посчитайте размер боковой стороны с помощью теоремы синусов: a/sin 45°= b/sin 90°, где b – основание, а – боковая сторона, sin 90° равен единице. В итоге получается: a = b*sin 45°= b*√2/2. То есть, боковая сторона равна основанию, умноженному на корень из двух, деленный на два.
5
Используйте теорему синусов и в том случае, когда равнобедренный треугольник не прямоугольный. По основанию и прилежащему к нему углу α найдите боковую сторону: a = b*sinα/sinβ. Угол β вычислите с помощью свойства треугольников, которое гласит, что сумма всех углов треугольника равна 180°: β = 180°- 2*α.
6
Примените теорему косинусов, в соответствии с которой квадрат стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения данных сторон, умноженного на косинус угла между ними. По отношению к равнобедренному треугольнику приведенная формула выглядит таким образом: a = b/2cosα.
Источники:
  • Найдите боковую сторону

Совет 2: Как найти сторону равнобедренного треугольника

Равнобедренным называют треугольник, у которого 2 стороны равны. Из определения следует, что правильный треугольник тоже является равнобедренным, но обратное утверждение неверное. Существует несколько способов того, как рассчитать стороны равнобедренного треугольника.
Равнобедренным называют треугольник, у которого 2 стороны равны
Вам понадобится
  • Знать, по возможности, углы треугольника и хотя бы одну из его сторон.
Инструкция
1
Способ 1. Выходит из теоремы синусов треугольника. Теорема синусов гласит: стороны треугольника пропорциональны синусам противолежащих углов (рис. 1)
Из этой формулы вытекает следующее равенство:a = 2Rsinα,b = 2Rsinβ
рис. 1. R - радиус окружности, описанной вокруг треугольника.
2
Способ 2. Выходит из теоремы косинусов треугольника. Согласно этой теореме, для любого плоского треугольника со сторонами a, b, c и углом α, который лежит напротив стороны, справедливо равенство на рис. 2
Отсюда существует следствие:a = b/2cosα;
Также из теоремы косинусов существует еще 1 следствие:
b = 2a*sin(β/2)
Как найти <b>сторону</b> равнобедренного треугольника
Источники:
  • рассчитать стороны треугольника

Совет 3: Как найти основание прямоугольного треугольника

В такой фигуре как прямоугольный треугольник обязательно существует четкое соотношение сторон относительно друг друга. Зная две из них, всегда можно найти третью. То, каким образом это возможно сделать, вы узнаете из инструкции, предложенной ниже.
Как найти основание прямоугольного треугольника
Вам понадобится
  • - калькулятор.
Инструкция
1
Возведите в квадрат оба катета, а после сложите их между собой a2+b2. Полученный результат является гипотенузой (основанием) в квадрате c2. Далее нужно лишь извлечь корень из последнего числа, и гипотенуза найдена. Данный метод является самым простым и удобным в применении на практике. Главное в процессе нахождения сторон треугольника таким образом - не забывать извлекать корень из предварительного результата, чтобы избежать самой распространенной ошибки. Формула выведена, благодаря самой известной в мире теореме Пифагора, которая во всех источниках имеет такой вид: a2+b2 = c2.
2
Разделите один из катетов a на синус противолежащего ему угла sin α. В том случае, если в условии известны стороны и синусы, этот вариант нахождения гипотенузы будет наиболее приемлемым. Формула в данном случае будет иметь совсем простой вид: c=a/sin α. Будьте внимательны при всех вычислениях.
3
Умножьте сторону a на два. Гипотенуза вычислена. Это, пожалуй, самый элементарный способ нахождения нужной нам стороны. Но, к сожалению, этот метод применяется только в одном случае - если существует сторона, которая лежит напротив угла в градусную меру, равную числу тридцать. При наличии таковой вы можете быть уверены, что она всегда будет являть собой ровно половину гипотенузы. Соответственно, вам остается лишь увеличить ее в два раза и ответ готов.
4
Разделите катет a на косинус прилежащего к нему угла cos α. Такой метод подойдет исключительно в том случае, если вам известен один из катетов и косинус угла к нему прилежащего. Этот способ напоминает уже представленный вам ранее, в котором используется также катет, но вместо косинуса - синус противолежащего угла. Только вот формула в этом случае будет иметь несколько другой измененный внешний вид: с=a/ cos α. Вот и все.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500