Совет 1: Как решать неполное квадратное уравнение

Под неполным квадратным уравнением понимается квадратное уравнение нестандартного вида, в котором отсутствует один из членов - b или c. При этом для решения данное уравнение необходимо привести к полному виду и правильно выстроить. При варианте аz² + с = 0 в уравнении второй член b=0, а в уравнении аz² + bz = 0 третий член с=0. Причем первый член а должен обязательно быть отличным от нуля. Решение неполного квадратного уравнения находится классическим методом через дискриминант после приведения к полному виду. Однако в каждом из частных случаев уравнения легче найти корни другим способом.
Как решать неполное квадратное уравнение
Инструкция
1
Приведите заданное неполное квадратное уравнение к полному виду: аz² + bz + c = 0. Для этого определите, какой из множителей равен нулю. Далее можно решать обычное квадратное уравнение с помощью нахождения дискриминанта и корней.
Как решать неполное квадратное уравнение
2
Если задано неполное уравнение вида аz² + bz = 0, его корни можно определить более простым способом. Для этого вынесите z за скобки. Вы получите запись: z(аz + b) = 0. Множители можно расписать: z=0 и аz + b = 0, так как оба выражения могут при умножении давать в результате ноль. В записи аz + b = 0 перенесем второй множитель вправо с другим знаком. Отсюда получаем решения z1 = 0 и z2 = -b/а. Это и есть корни исходного уравнения.
3
Если же имеется неполное уравнение вида аz² + с = 0, в данном случае решение находятся простым переносом свободного члена в правую часть уравнения. Также поменяйте при этом его знак. Получится запись аz² = -с. Выразите z² = -с/а. Возьмите корень и запишите два решения - положительное и отрицательное значение корня квадратного.
Как решать неполное квадратное уравнение
Ваши деньги должны работать на вас!
вклад на выгодных условиях
Стабильный доход и уверенность в завтрашнем дне - это то, что вы получите, сделав вклад на самых выгодных для себя условиях.
Возможность вернуть до 260 000 рублей
Если вы решили взять ипотеку
Каждый россиянин имеет право вернуть часть уплаченных налогов за покупку жилья.
Карта с большими бонусами
Дебетовая карта
Возвращается до 10% от стоимости покупок. Выгодна при крупных тратах.
Настроить автоплатежи просто
настройка автоплатежей за пару минут
В мобильном приложении Сбербанка все ваши платежи будут происходить в срок и без вашего участия.
Обратите внимание
При наличии в уравнении дробных коэффициентов помножьте все уравнение на соответствующий множитель так, чтобы избавиться от дробей.

Совет 2: Как решать квадратные уравнения

Знание о том, как решать квадратные уравнения, необходимо и школьникам, и студентам, иногда это может помочь и взрослому человеку в обычной жизни. Существует несколько определенных методов решений.
Как решать квадратные уравнения

Решение квадратных уравнений


Квадратным уравнением называется уравнение вида a*x^2+b*x+c=0. Коэффициент х является искомой переменной, a, b, c - числовые коэффициенты. Помните, что знак «+» может меняться на знак «-».

Для того чтобы решить данное уравнение, необходимо воспользоваться теоремой Виета или найти дискриминант. Самым распространенным способом является нахождение дискриминанта, так как при некоторых значениях a, b, c воспользоваться теоремой Виета не представляется возможным.

Чтобы найти дискриминант (D), необходимо записать формулу D=b^2 - 4*a*c. Значение D может быть больше, меньше или равно нулю. Если D больше или меньше нуля, то корня будет два, если D=0, то остается всего один корень, более точно можно сказать, что D в этом случае имеет два равнозначных корня. Подставьте известные коэффициенты a, b, c в формулу и вычислите значение.

После того как вы нашли дискриминант, для нахождения х воспользуйтесь формулами: x(1) = (- b+sqrt{D})/2*a; x(2) = (- b-sqrt{D})/2*a, где sqrt - это функция, означающая извлечение квадратного корня из данного числа. Посчитав эти выражения, вы найдете два корня вашего уравнения, после чего уравнение считается решенным.

Если D меньше нуля, то он все равно имеет корни. В школе данный раздел практически не изучается. Студенты вузов должны знать о том, что появляется отрицательное число под корнем. От него избавляются выделяя мнимую часть, то есть -1 под корнем всегда равно мнимому элементу «i», который умножается на корень с таким же положительным числом. К примеру, если D=sqrt{-20}, после преобразования получается D=sqrt{20}*i. После этого преобразования, решение уравнения сводится к такому же нахождению корней, как было описано выше.

Теорема Виета заключается в подборе значений x(1) и x(2). Используется два тождественных уравнения: x(1) + x(2)= -b; x(1)*x(2)=с. Причем очень важным моментом является знак перед коэффициентом b, помните, что этот знак противоположен тому, который стоит в уравнении. С первого взгляда кажется, что посчитать x(1) и x(2) очень просто, но при решении вы столкнетесь с тем, что числа придется именно подбирать.

Элементы решения квадратных уравнений


По правилам математики некоторые квадратные уравнения можно разложить на множители: (a+x(1))*(b-x(2))=0, если вам посредством формул математики удалось преобразовать подобным образом данное квадратное уравнение, то смело записывайте ответ. x(1) и x(2) будут равны рядом стоящим коэффициентам в скобках, но с противоположным знаком.

Также не стоит забывать про неполные квадратные уравнения. У вас может отсутствовать какое-то из слагаемых, если это так, то все его коэффициенты просто равны нулю. Если перед x^2 или x ничего не стоит, то коэффициенты а и b равны 1.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500