Совет 1: Как сравнивать корни

Корнем n-ой степени из действительного числа a называется такое число b, для которого выполняется равенство b^n = a. Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных. Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.
Как сравнивать корни
Инструкция
1
Пусть требуется сравнить два иррациональных числа. Первое, на что следует обратить внимание - это показатели степени корней у сравниваемых чисел. Если показатели одинаковы, то сравнивают подкоренные выражения. Очевидно, что чем больше подкоренное число, тем больше значение корня при равных показателях. Например, пусть надо сравнить кубический корень из двух и кубический корень из восьми. Показатели одинаковы и равны 3, подкоренные выражения 2 и 8, причем 2 < 8. Следовательно, и кубический корень из двух меньше кубического корня из восьми.
2
В другом случае показатели степени могут быть разными, а подкоренные выражения одинаковыми. Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число.Возьмите для примера кубический корень из восьми и корень шестой степени из восьми. Если обозначить значение первого корня как a, а второго - как b, то a^3 = 8 и b^6 = 8. Легко видеть, что a должно быть больше b, таким образом кубический корень из восьми больше корня шестой степени из восьми.
3
Более сложной представляется ситуация с разными показателями степени корня и разными подкоренными выражениями. В таком случае надо найти наименьшее общее кратное для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.Пример: надо сравнить 3^1/3 и 2^1/2 (математическая запись корней есть на рисунке). Наименьшее общее кратное для 2 и 3 равно 6. Возведите оба корня в шестую степень. Тут же получится, что 3^2 = 9 и 2^3 = 8, 9 > 8. Следовательно, и 3^1/3 > 2^1/2.
Полезный совет
Чтобы сравнить арифметические выражения, состоящие из нескольких корней, придется их приводить к общему корню. Это можно сделать, пользуясь формулами сокращенного умножения, формулой Бинома Ньютона и другими приемами.
Источники:
  • Преобразования выражений, включающих корни натуральной степени
  • кубический корень из 2

Совет 2 : Как умножить квадратный корень на квадратный корень

Одна из четырех простейших математических операций (умножение) породила другую, несколько более усложненную - возведение в степень. Та, в свою очередь, добавила дополнительную сложность в обучение математике, породив обратную себе операцию - извлечение корня. К любой из этих операций можно применять все остальные математические действия, что еще более запутывает изучение предмета. Чтобы все это каким-то образом упорядочить, существуют наборы правил, одно из которых регламентирует порядок умножения корней.
Как умножить квадратный корень на квадратный корень
Инструкция
1
Используйте для умножения квадратных корней правило - результатом этой операции должен стать квадратный корень, подкоренным выражением которого будет произведение подкоренных выражений корней-множителей. Это правило действует при умножении двух, трех и любого другого числа квадратных корней. Впрочем, оно относится не только к корням квадратным, но и к кубическим или с любым другим показателем степени, если этот показатель одинаков у всех участвующих в операции радикалов.
2
Если под знаками умножаемых корней стоят численные значения, то перемножьте их между собой и поставьте полученную величину под знак корня. Например, при умножении √3,14 на √7,62 это действие можно записать так: √3,14 * √7,62 = √(3,14*7,62) = √23,9268.
3
Если подкоренные выражения содержат переменные, то сначала запишите их произведение под одним знаком радикала, а затем попробуйте упростить полученное подкоренное выражение. Например, если надо умножить √(x+7) на √(x-14), то операцию можно записать так: √(x+7) * √(x-14) = √((x+7) * (x-14)) = √(x²-14*x+7*x-7*14) = √(x²-7*x-98).
4
При необходимости перемножить больше двух квадратных корней действуйте точно так же - собирайте под одним знаком радикала подкоренные выражения всех умножаемых корней в качестве множителей одного сложного выражения, а затем упрощайте его. Например, при перемножении квадратных корней из чисел 3,14, 7,62 и 5,56 операцию можно записать так: √3,14 * √7,62 * √5,56 = √(3,14*7,62*5,56) = √133,033008. А умножение квадратных корней, извлекаемых из выражений с переменными x+7, x-14 и 2*x+1 - так: √(x+7) * √(x-14) * √(2*x+1) = √((x+7) * (x-14) * (2*x+1)) = √((x²-14*x+7*x-7*14) * (2*x+1)) = √((x²-7*x-98) * (2*x+1)) = √(2*x*x²-2*x*7*x-2*x*98 + x²-7*x-98) = √(2*x³-14*x²-196*x+x²-7*x-98) = √(2*x³-13*x²-205*x-98).
Видео по теме
Источники:
  • корень квадратный правила
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500