Совет 1: Как найти периметр призмы

Любая геометрическая фигура имеет несколько измерений. Одно из них – периметр. Найти его, как правило, проще всего. Нужно лишь знать размер всех сторон геометрической фигуры.
Вам понадобится
  • Линейка, лист бумаги, ручка.
Инструкция
1
Разберитесь, что такое призма, и какой вид эта геометрическая фигура может иметь. Учтите, что слово «призма» переводится с латинского как «нечто отпиленное». Этот многогранник, всегда имеет два основания, которые расположены в параллельных плоскостях и являются равными многоугольниками. Они могут быть треугольными, четырехугольными, а также n-угольными.
2
Запомните, что количество остальных (боковых) граней зависит от вида основания. Если в основании треугольник, боковых граней соответственно окажется три, четырехугольник – четыре и так далее.
3
Имейте в виду, что ребра призмы, которые не являются сторонами оснований, называются боковыми. В том случае, когда боковое ребро располагается под углом 90о к основанию, призма именуется прямой. В противном случае – наклонной. Если у прямой призмы в основании окажется правильный многоугольник, она превратится в правильную призму. Пример подобной геометрической фигуры – куб.
4
Чтобы вычислить периметр призмы, найдите периметры оснований и боковых граней призмы, и все размеры сложите друг с другом. Для этого измерьте при помощи линейки длины сторон (или ребра) каждой из граней. И посчитайте периметр каждого многоугольника.
5
Упростите свою задачу. Так как размер обоих оснований одинаков, померяйте длины ребер только у одного из них. Сложите размеры всех сторон и умножьте получившуюся сумму на два.
6
Если у оснований есть ребра равного размера, найдите количество одинаковых боковых граней. Измерьте длины сторон одной из этих граней, вычислите ее периметр. Умножьте получившееся значение на общее число одинаковых граней.
7
Отдельно посчитайте периметр каждой из тех боковых граней, которая ни разу не повторяется.
8
Сложите все посчитанные периметры – двух оснований, повторяющихся боковых граней, и тех боковых граней, которые не имеют аналога. Общая сумма будет равна периметру призмы.

Совет 2: Как найти периметр

Периметр – это сумма длин сторон какой-либо геометрической фигуры. Иными словами, если взять нить и выложить с ее помощью на столе, например, квадрат, а потом измерить длину этой нити, то полученная цифра и будет периметром данного квадрата. Все знают, что такое периметр, но не каждый может сразу сообразить, как его рассчитать.
Для измерения периметра разных фигур существуют различные способы.

Инструкция
1
Квадрат. Общеизвестно, что у квадрата есть 4 стороны и они равны. Поэтому формула для вычисления его периметра выглядит так:

P=4а,

где а – это длина одной стороны данной фигуры.

Проще говоря, измерьте одну из сторон квадрата и умножьте эту цифру на количество сторон, то есть на 4. В нашем случае периметр равен 16 см (4*4).
2
Прямоугольник и ромб. У этих двух фигур только параллельные друг другу стороны равны, соответственно периметр определяется следующим образом:

Р=2(а+b),

где а и b – соприкасающиеся стороны. Таким образом, на нашем примере периметр прямоугольника равен 24 см (2*(8+4)).
3
Треугольник. Поскольку треугольники бывают совершенно разными – равнобедренными, неправильными, с прямыми углами, то единственным верным способом определить периметр такой фигуры является формула:

Р=a+b+c.

То есть для вычисления периметра треугольника просто измерьте длины всех трех сторон и сложите полученные цифры. В нашем случае периметр треугольника равен 10,7 см (2+5+3,7).
4
Круг. Периметр круга называют длиной окружности, которая вычисляется по особой формуле:

Р=d*3,14,

где d – это диаметр окружности, а 3,14 – это число «пи», которое специально выведено учеными для определения периметра данной геометрической фигуры. Наш круг (см.рисунок) имеет в диаметре 3 см, то есть периметр окружности равен 9,42см (3*3,14).
Источники:
  • как находить длину окружности

Совет 3: Как узнать периметр треугольника

Периметр треугольника, как и любой другой плоской геометрической фигуры, составляет сумма длин ограничивающих его отрезков. Поэтому, чтобы вычислить длину периметра, надо знать длины его сторон. Но в силу того, что длины сторон в геометрических фигурах связаны определенными соотношениями с величинами углов, может оказаться достаточным знание лишь одной или двух сторон и оного или двух углов.
Инструкция
1
Сложите все длины сторон треугольника (A, B, C), если они известны - это самый простой из возможных способов нахождения длины периметра (P): P=A+B+C.
2
Если известны величины двух углов треугольника (β и γ) и длина стороны между ними (A), то, исходя из теоремы синусов, можно узнать длины двух других сторон. Каждая из них будет равна частному от операции деления, где делимым будет произведение длины известной стороны на синус угла между известной и искомой сторонами, а делителем - синус угла, равного разности между 180° и суммой двух известных углов. То есть, неизвестная сторона B будет вычисляться по формуле B=A∗sin(β)/sin(180°-α-β), а неизвестная сторона C - по формуле C=A∗sin(γ)/sin(180°-α-β). Тогда длину периметра (P) можно определить, сложив эти два выражения с длиной известной стороны A: P = A + A∗sin(β)/sin(180°-α-β) + A∗sin(γ)/sin(180°-α-β) = A∗(1 + sin(β)/sin(180°-α-β) + sin(γ)/sin(180°-α-β)).
3
Если треугольник - прямоугольный, то его периметр (P) можно вычислить, зная длины лишь двух сторон. Если известны длины обоих катетов (A и B), то длина гипотенузы, в соответствии с теоремой Пифагора, будет равна квадратному корню из суммы квадратов длин известных сторон. Если к этой величине прибавить сумму известных сторон, то станет известна и длина периметра: P=A+B+√(A²+B²).
4
Если в прямоугольном треугольнике известны длины гипотенузы (C) и одного из катетов (A), то из той же теоремы Пифагора длину недостающего катета можно определить, как квадратный корень из разницы квадратов длин гипотенузы и известного катета. К этой величине останется добавить длины известных сторон, чтобы вычислить периметр треугольника: P=A+C+√(C²-A²).
5
Если известна длина одного из катетов прямоугольного треугольника (A) и величина угла (α), лежащего напротив него, то этого достаточно, чтобы вычислить недостающие стороны и длину периметра (P): P=A∗(1/tg(α)+1/sin(α)+1).
6
Если кроме длины одного из катетов прямоугольного треугольника (A) известна величина прилежащего к нему острого угла (β), то и этого хватит для расчета периметра (P): P=A∗(1/сtg(β)+1/cos(β)+1).
7
Если известна величина одного из острых углов прямоугольного треугольника (α) и длина его гипотенузы (C), то периметр (P) можно высчитать по формуле: P=C∗(1+sin(α)+cos(α)).
Видео по теме

Совет 4: Как найти периметр пятиугольника

Нахождение периметра пятиугольника - задача, требующая обширных теоретических знаний, пространственного и логического мышления. Важно также и правильно оформить решение.
Вам понадобится
  • - Тетрадь;
  • - линейка;
  • - карандаш;
  • - ручка;
  • - калькулятор.
Инструкция
1
Пятиугольник – это многоугольник с пятью углами. Пятиугольники бывают правильными и неправильными. Правильный пятиугольник — это выпуклый многоугольник, у которого все стороны и все углы равны между собой.

Неправильный пятиугольник – это многоугольник, стороны и углы которого не равны. В базовом курсе геометрии чаще рассматриваются правильные пятиугольники.
2
Периметр многоугольника – это сумма длин всех его сторон. Чтобы найти периметр пятиугольника, вычислите длину каждой стороны, а затем сложите их.
3
Если в задаче дано, что сторона правильного пятиугольника АВСDF равна 5 см, то периметр его будет равен:

P = 5АВ

P = 5*5 = 25

В данном случае вы просто умножаете длину стороны пятиугольника на количество сторон, т.к. все они равны между собой (Рис.1).
4
Если же в задании вам встретился неправильный пятиугольник, то вы должны сначала найти длину каждой его стороны, а потом сложить их.
5
К примеру, в задаче говорится, что ВО = 8, ОF = 4, ВС = 7, угол ВОА = 90, угол ОАМ = 45, ОМ = 3, АВ = DF, ВС = СD. Вначале рассмотрите треугольник АОВ: ВО = 8. Из условия следует, что АО = ОF = 4. Треугольник АОВ является прямоугольным. АО и ОF – катеты, АВ – гипотенуза. По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов.
6
Следовательно, АВ ^2 = АО ^2 + ОF ^2.

АВ ^2 = 8^2 + 4^2

АВ ^2 = 64 + 16

АВ ^2 = 80

АВ = √80

АВ = 8,94

АВ = DF = 8,94.
7
Затем рассмотрите треугольник АОF. АО = ОF = 4, ОМ = 3. Угол АОВ = DОF = 90 (как накрест лежащие). Следовательно, АОМ = ВОD (как накрест лежащие), и значит АОМ + ВОD = 360 - АОВ + DОF = 180. АОМ = 90.

Отсюда следует, что треугольник АОF – прямоугольный.

Значит угол АМО = АОМ – ОАМ,

АМО = 90 – 45, АМО = 45.
8
Следовательно, треугольник АОF – равнобедренный. А в равнобедренных треугольниках напротив равных углов лежат равные стороны. Значит АМ = ОМ = 3.

Отсюда АF = 2АМ = 6.
9
Теперь вы можете вычислить периметр пятиугольника АВСDF.

Р = 8,94*2+7*2+6

Р = 37,88
Обратите внимание
Вычисление периметра не зависит от вида призмы. Он подсчитывается одинаково и для прямой, и для наклонной призмы.
Источники:
  • Призмы
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше