Совет 1: Как найти периметр равнобедренной трапеции

Трапеция - это двухмерная геометрическая фигура, имеющая четыре вершины и лишь две параллельные стороны. Если длина двух ее непараллельных сторон одинакова, то трапеция называется равнобедренной или равнобокой. Границу такого многоугольника, составленную из его сторон, принято обозначать греческим словом «периметр». В зависимости от набора исходных данных вычислять длину периметра нужно по разным формулам.
Как найти периметр равнобедренной трапеции
Инструкция
1
Если известны длины обоих оснований (a и b) и длина боковой стороны (c), то периметр (P) этой геометрической фигуры рассчитывается очень просто. Так как трапеция равнобедренна, то ее боковые стороны имеют одинаковую длину, а это значит, что вам известны длины всех сторон - просто сложите их: P = a+b+2*c.
2
Если длины обоих оснований трапеции неизвестны, но дана длина средней линии (l) и боковой стороны (c), то и этих данных достаточно для вычисления периметра (P). Средняя линия параллельна обоим основаниям и по длине равна их полусумме. Удвойте это значение и добавьте к нему тоже удвоенную длину боковой стороны - это и будет периметром равнобедренной трапеции: P = 2*l+2*c.
3
Если из условий задачи известны длины обоих оснований (a и b) и высота (h) равнобедренной трапеции, то с помощью этих данных можно восстановить длину недостающей боковой стороны. Сделать это можно рассмотрев прямоугольный треугольник, в котором гипотенузой будет неизвестная сторона, а катетами - высота и короткий отрезок, который она отсекает от длинного основания трапеции. Длину этого отрезка можно вычислить, поделив пополам разность между длинами большего и меньшего оснований: (a-b)/2. Длина гипотенузы (боковой стороны трапеции), согласно теореме Пифагора, будет равна квадратному корню из суммы возведенных в квадрат длин обоих известных катетов. Замените в формуле из первого шага длину боковой стороны полученным выражением, и вы получите такую формулу периметра: P = a+b+2*√(h²+(a-b)²/4).
4
Если в условиях задачи даны длины меньшего основания (b) и боковой стороны (c), а также высота равнобедренной трапеции (h), то рассматривая тот же вспомогательный треугольник, что и в предыдущем шаге, вам придется вычислять длину катета. Вновь воспользуйтесь теоремой Пифагора - искомая величина будет равна корню из разности между возведенной в квадрат длиной боковой стороны (гипотенузы) и высотой (катетом): √(c²-h²). По этому отрезку неизвестного основания трапеции можно восстановить его длину - удвойте это выражение и добавьте к результату длину короткого основания: b+2*√(c²-h²). Подставьте это выражение в формулу из первого шага и найдите периметр равнобедренной трапеции: P = b+2*√(c²-h²)+b+2*c = 2*(√(c²-h²)+b+c).
Источники:
  • периметр трапеции

Совет 2 : Как найти стороны трапеции

Трапеция представляет собой обычный четырехугольник, обладающий добавочным свойством параллельности двух своих сторон, которые называются основаниями. Поэтому этот вопрос, во-первых, следует понимать с точки зрения отыскания боковых сторон. Во-вторых, для задания трапеции требуется не менее четырех параметров.
Как найти стороны трапеции
Инструкция
1
В данном конкретном случае самым общим ее заданием (не избыточным) следует считать условие: даны длины верхнего и нижнего оснований, а также вектор одной из диагоналей. Индексы координат (дабы написание формул не было похоже на умножение) будут выделены курсивом).Для графического изображения процесса решения постройте рисунок 1.
2
Пусть в представленной задаче рассматривается трапеция AВCD. В ней даны длины оснований ВC=b и АD=a, а также диагональ АС, заданная вектором p(px, py). Его длина (модуль) |p|=p=sqrt(((px)^2 +(py)^2). Так как вектор задается еще и углом наклона к оси (в задаче - 0X), то обозначьте его через ф (угол CAD и параллельный ему угол ACB). Далее необходимо применить известную со школьной программы теорему косинусов. При этом искомую величину (длины CD или АВ при составлении уравнения обозначьте через х).
3
Рассмотрите треугольник AСD. Здесь длина стороны АС равна модулю вектора |p|=p. AD=b. По теореме косинусов x^2=p^2+ b^2-2pbcosф. x=CD=sqrt(p^2+ b^2-2pbcosф)=CD.
4
Теперь рассмотрите треугольник ABC. Длина стороны АС равна модулю вектора |p|=p. BC=a. По теореме косинусов x^2=p^2+ a^2-2pacosф. х=AB=sqrt(p^2+ a^2-2pacosф).
5
Хотя квадратное уравнение и имеет два корня, в данном случае необходимо выбрать лишь те, где перед корнем из дискриминанта стоит знак плюс, при этом заведомо исключив отрицательные решения. Это обусловлено тем, что длина стороны трапеции должна быть заведомо положительной.
6
Итак, искомые решения в виде алгоритмов решения данной задачи получены. Чтобы представить числовое решение остается подставить данные из условия. При этом cosф вычисляется, как направляющий вектор (орт) вектора p=px/sqrt(px^2+py^2).
Обратите внимание
Конечно, возможны и другие исходные данные, например задание двух диагоналей и высоты трапеции. Но в любом случае вам потребуется информация о расстоянии между основаниями трапеции.
Источники:
  • стороны трапеции формула

Совет 3 : Как находить периметр трапеции

Трапеция представляет собой четырехугольник с двумя параллельными и двумя не параллельными сторонами. Чтобы вычислить ее периметр, нужно знать размеры всех сторон трапеции. При этом данные в задачах могут быть разными.
Как находить периметр трапеции
Вам понадобится
  • - калькулятор;
  • - таблицы синусов, косинусов и тангенсов;
  • - бумага;
  • - чертежные принадлежности.
Инструкция
1
Самый простой вариант задачи – когда даны все стороны трапеции. В этом случае их нужно просто сложить. Можно воспользоваться следующей формулой: p=a+b+c+d, где p – периметр, а буквами a, b, c и d обозначены стороны, противолежащие углам, обозначенным соответствующими прописными буквами.
2
Есть дана равнобедренная трапеция, достаточно сложить два ее основания и прибавить к ним удвоенный размер стороны. То есть периметр в этом случае вычисляется по формуле: p=a+c+2b, где b – сторона трапеции, а и с – основания.
3
Расчеты будут несколько более длительными, если какую-то из сторон надо вычислить. Например, известно длинное основание, прилежащие к нему углы и высота. Вам нужно вычислить короткое основание и сторону. Для этого начертите трапецию ABCD, из верхнего угла B проведите высоту BE. У вас получится треугольник АВЕ. Вам известен угол А, соответственно, вы знаете его синус. В данных задачи указана также высота BE, которая одновременно является катетом прямоугольного треугольника, противолежащим известному вам углу. Чтобы найти гипотенузу АВ которая одновременно является стороной трапеции, достаточно BE разделить на sinA. Точно так же найдите длину второй стороны. Для этого нужно провести высоту из другого верхнего угла, то есть CF.

Теперь вам известны большее основание и стороны. Для вычисления периметра этого мало, нужен еще размер меньшего основания. Соответственно, в двух образовавшихся внутри трапеции треугольниках надо найти размеры отрезков AE и DF. Это можно сделать, например, через косинусы известных вам углов А и D. Косинус – это отношение прилежащего катета к гипотенузе. Чтобы найти катет, нужно гипотенузу умножить на косинус. Дальше периметр вычислите по той же формуле, что и в первом шаге, то есть сложив все стороны.
4
Еще один вариант: даны два основания, высота и одна из сторон, нужно найти вторую сторону. Это также лучше делать с использованием тригонометрических функций. Для этого начертите трапецию. Допустим, вам известны основания АD и ВС, а также сторона АВ и высота BF. По этим данным вы можете найти угол A (через синус, то есть отношение высоты к известной стороне), отрезок АF (через косинус или тангенс, поскольку угол вам уже известен. Вспомните также свойства углов трапеции – сумма углов, прилежащих к одной стороне, составляет 180°.

Проведите высоту CF. У вас получился еще один прямоугольный треугольник, в котором вам нужно найти гипотенузу CD и катет DF. Начните с катета. Вычтите из длины нижнего основания длину верхнего, а из полученного результата – длину уже известного вам отрезка АF. Теперь в прямоугольном треугольнике СFD вам известны два катета, то есть вы можете найти тангенс угла D, а по нему – и сам угол. После этого останется через синус этого же угла вычислить сторону CD, как уже было описано выше.
Видео по теме
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500