Совет 1: Как найти периметр, зная площадь квадрата

Квадрат - правильный четырехугольник, у которого все стороны равны, и все углы прямые. Периметром квадрата называется сумма длин всех его сторон, а площадью – произведение двух сторон или квадрат одной стороны. Исходя из известных соотношений, через один параметр можно вычислить другой.
Инструкция
1
Для квадрата периметр (P) равен четырехкратному значению одной его стороны (b). P = 4*b или сумме значений длин всех его сторон P = b + b + b + b. Площадь квадрата выражается в произведении двух смежных сторон. Найдите длину одной из сторон квадрата. Если вам известна только площадь (S), извлеките из ее значения квадратный корень a = √S. Далее определите периметр.
2
Дано: площадь квадрата равна 36 см². Найдите периметр фигуры.Решение 1. Найдите сторону квадрата: b = √S, b = √36 см², b =6 см. Найдите периметр: P = 4*b, P = 4*6см, P = 24 см. Или Р = 6 + 6 + 6 + 6, Р = 24см.Ответ: периметр квадрата площадью 36 см² равен 24 см.
3
Найти периметр квадрата через площадь можно, не прибегая к лишнему действию (вычислению стороны). Для этого воспользуйтесь формулой вычисления периметра, справедливой только для квадрата P = 4*√S.
4
Решение 2. Найдите периметр квадрата: P = 4*√S, P = 4*√36см², P = 24 см.Ответ: периметр квадрата равен 24 см.
5
Многие параметры этой геометрической фигуры связаны между собой. Зная один из них, вы сможете найти любой другой. Существуют также следующие формулы вычисления:Диагональ: a² = 2*b², где а – диагональ, b – сторона квадрата. Или a²=2S.Радиус вписанной окружности: r = b/2, где b – сторона.Радиус описанной окружности: R = ½*d, где d – диагональ квадрата.Диаметр описанной окружности: D = f, где f – диагональ.

Совет 2: Как найти периметр в математике

Периметр – это суммарная длина сторон геометрической фигуры. Но если возникнет необходимость быстро рассчитать периметр чего-либо (например, во время ремонта или строительства), не каждый сможет это сделать с легкостью. Вспомним основные правила для вычисления периметра.
Вам понадобится
  • геометриеская фигура, линейка, ручка
Инструкция
1
Периметр для квадратов и ромбов рассчитывается по формуле Р=4а, где а – это длина одной стороны фигуры. Поскольку все ее стороны равны, измерьте одну сторону и полученное число умножьте на количество сторон, т.е. на четыре.
2
Для прямоугольников и параллелограммов, т.к. у них равны не все стороны, а только противоположные, существует другая формула: Р=2(а+b). Под а и b подразумеваются смежные стороны. Их общую длину умножьте на два.
3
Чтобы получить периметр трапеции суммируйте длины всех ее сторон (у трапеции они не одинаковы), т.е. в данном случае воспользуйтесь формулой P=а+b+с+d.
4
Общая формула для расчета периметра треугольника выглядит как Р=а+b+с, т.е. вы должны будете сложить длины сторон треугольника. Но поскольку треугольники бывают разных видов, то вычисления могут производиться иначе. Например, если вам известно, что измеряемый треугольник – равносторонний, то умножьте длину его стороны на три.
5
Более сложно вычислить периметр круга (длина окружности, р). Известно, что длина окружности составляет 317 от длины диаметра круга (d). В математике это соотношение принято обозначать буквой "Пи" (?) и усреднено считать как 3,14. Получается, что рd=?. Отсюда p=?d=2?r, где r – это радиус имеющейся окружности. Поэтому, чтобы вычислить периметр круга, вам необходимо сначала найти радиус окружности, а затем умножить это число на 2 и на 3,14.
6
Если же у вас возникла необходимость узнать периметр дуги, то для начала вам нужно замерить две величины – длину радиуса дуги и центральный, т.е. образованный двумя радиусами (в градусах, n). Подставьте полученные величины в формулу p=Пrn180°.
Видео по теме

Совет 3: Как найти сторону квадрата, если известна его диагональ

Квадрат является одной из наиболее простых геометрических фигур в плане вычисления его параметров - длин сторон и диагоналей, площади и периметра. Это определяется тем, что в отличие от других многоугольников, всегда известны величины всех его углов, а также достаточно знать длину всего одной стороны. Нахождение длины стороны квадрата по известной длине диагонали, как в общем виде, так и с практическими расчетами не представляет сложности.
Инструкция
1
Используйте теорему Пифагора, алгебраическая формулировка которой утверждает, что в прямоугольном треугольнике сумма квадратов длин катетов равна квадрату длины гипотенузы: a² + b² = c². Так как диагонали квадрата делят его на два именно таких прямоугольных треугольника, у которых к тому же еще и длины катетов одинаковы, то можно сформулировать такое свойство квадрата, как геометрической фигуры: квадрат длины диагонали равен удвоенному квадрату длины стороны (2a²=c²). Из этого вытекает, что длина стороны равна квадратному корню из половины квадрата длины диагонали: a=√(c²/2).
2
Воспользуйтесь встроенным в поисковую систему Google калькулятором для практических расчетов по вычислению длины стороны квадрата. Например, если известная длина диагонали равна 15 сантиметрам, то перейдя на сайт поисковика, введите такой запрос: «корень из ((15 в квадрате)/2)». Если вы привыкли использовать символ ^ для обозначения операции возведения в степень и sqrt для обозначения операции извлечения квадратного корня, то Google правильно поймет и такой запрос: «sqrt (15^2/2)». В любом случае ответ будет одинаков: длина стороны квадрата равна 10,6066017 сантиметров.
3
Используйте, например, программный калькулятор из стандартного набора программ операционной системы Windows в качестве альтернативного способа для расчета длины стороны квадрата. Ссылка на его запуск упрятана довольно глубоко в главное меню системы - после щелчка по кнопке «Пуск» нужно раскрыть раздел «Все программы», перейти в подраздел «Стандартные», кликнуть секцию «Служебные» и выбрать пункт «Калькулятор». Более быстрый способ - нажать сочетание клавиш WIN + R, ввести команду calc и нажать клавишу Enter.
4
Введите известную длину стороны, затем нажмите клавишу со звездочкой и Enter - так вы выполните операцию возведения в квадрат. Затем нажмите клавишу с косой чертой, введите двойку и нажмите Enter. После этого щелкните кнопку с надписью sqrt и увидите искомую длину стороны квадрата - 10,606601717798212866012665431573 сантиметров.

Совет 4: Как найти площадь, зная диаметр

Задачи на вычисление площади круга часто встречаются в школьном курсе геометрии. Чтобы найти площадь круга, необходимо знать длину диаметра или радиуса окружности, в которую он заключен.
Вам понадобится
  • - длина диаметра окружности.
Инструкция
1
Окружность — фигура на плоскости, состоящая из множества точек, удалённых на одинаковое расстояние от другой точки, называемой центром. Круг — плоская геометрическая фигура, представляет собой множество точек, заключённых в окружность, которая является границей круга. Диаметр — это отрезок, соединяющий две точки на окружности и проходящий через её центр. Радиус — это отрезок, соединяющий точку на окружности и с её центром. π — число «пи», математическая константа, постоянная величина. Она показывает отношение длины окружности к длине её диаметра. Вычислить точное значение числа π невозможно. В геометрии пользуются приблизительным значением этого числа: π ≈ 3,14
Как найти <strong>площадь</strong>, зная диаметр
2
Площадь круга равна произведению квадрата радиуса на число и вычисляется по формуле: S=πR^2, где S — площадь круга, R — длина радиуса окружности.
3
Из определения радиуса следует, что он равен половине диаметра. Следовательно, формула приобретает вид: S=π(D/2)^2, где D — длина диаметра окружности. Подставьте в формулу значение диаметра, вычислите площадь круга.
4
Площадь круга измеряется в единицах площади — мм2, см2, м2 и т.п. В каких единицах выражается полученная вами площадь круга, зависит от того, в каких единицах был дан диаметр окружности.
5
Если вам необходимо вычислить площадь кольца, воспользуйтесь формулой: S=π(R-r)^2, где R, r - радиусы внешней и внутренней окружностей кольца соответственно.
Полезный совет
Существует Международный день числа «пи», который отмечается 14 марта. Точное время наступления торжественной даты — 1 час 59 минут 26 секунд, согласно цифрам числа — 3,1415926...

Совет 5: Как найти площадь и периметр квадрата

Квадрат представляет собой геометрическую фигуру, состоящую из четырех сторон одинаковой длины и четырех прямых углов, каждый из которых равен 90°. Определение площади или периметра четырехугольника, причем любого, требуется не только при решении задач по геометрии, но и в повседневной жизни. Эти умения могут стать полезными, например, во время ремонта при расчете нужного количества материалов - покрытий для пола, стен или потолка, а также для разбивки газонов и грядок и т.д.
Инструкция
1
Для определения площади квадрата умножьте величину длины на величину ширины. Так как в квадрате длина и ширина одинаковы, то значение одной стороны достаточно возвести в квадрат. Таким образом, площадь квадрата равна длине его стороны, возведенной в квадрат. Единицей измерения площади могут быть квадратные миллиметры, сантиметры, дециметры, метры, километры.Чтобы определить площадь квадрата, можно воспользоваться формулойS = aa, где S – площадь квадрата,а - сторона квадрата.
2
Пример № 1. Комната имеет форму квадрата. Сколько ламината (в кв.м) потребуется для того, чтобы полностью покрыть пол, если длина одной стороны комнаты составляет 5 метров.Запишите формулу: S = aa. Подставьте в нее указанные в условии данные.Так как а = 5 м, следовательно, площадь будет равнаS (комнаты) = 5х5= 25 кв.м, значит, и S (ламината) = 25 кв.м.
3
Периметр представляет собой общую длину границы фигуры. В квадрате периметр – это длина всех четырех, причем одинаковых, сторон. То есть, периметр квадрата представляет собой сумму всех его четырех сторон. Чтобы вычислить периметр квадрата, достаточно знать длину одной его стороны. Измеряется периметр в миллиметрах, сантиметрах, дециметрах, метрах, километрах.Для определения периметра имеется формула:P = a + а + а + а илиP = 4a, гдеР – периметр,а – длина стороны.
4
Пример № 2. Для отделочных работ помещения в форме квадрата требуются потолочные плинтуса. Вычислите общую длину (периметр) плинтусов, если величина одной стороны комнаты равна 6 метров. Запишите формулу P = 4a.Подставьте в нее указанные в условии данные:Р (комнаты) = 4 х 6 = 24 метра.Следовательно, длина потолочных плинтусов тоже будет равна 24 метров.
Видео по теме
Источники:
  • формула площади и периметра квадрата
Обратите внимание
Полезные свойства квадрата:

Квадрат – правильный четырехугольник, обладающий свойствами прямоугольника и ромба.
Квадрат – прямоугольник, у которого все стороны равны.
Квадрат – ромб, у которого все углы по 90 градусов.
Квадрат – грань куба.
Диагонали квадрата равны и пересекаются под прямым углом.
Диагональ квадрата разбивает его на два равных прямоугольных треугольника и является гипотенузой к каждому из этих треугольников.
Диагональ квадрата - это диаметр описанной в фигуру окружности.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500