Совет 1: Как найти периметр квадрата, если известна его площадь

Квадрат представляет собой правильный четырехугольник (или ромб), в котором все углы являются прямыми, а стороны равны между собой. Как и у любого иного правильного многоугольника, у квадрата можно высчитать периметр и площадь. Если площадь квадрата уже известна, то найти его стороны, а затем и периметр не составит труда.
Инструкция
1
Площадь квадрата находится по формуле:
S = a²
Это означает, что для того, чтобы вычислить площадь квадрата, нужно умножить длины двух его сторон друг на друга. Как следствие, если знать площадь квадрата, то при извлечении корня из данного значения можно узнать длину стороны квадрата.
Пример: площадь квадрата 36 см², чтобы узнать сторону данного квадрата, необходимо извлечь квадратный корень из значения площади. Таким образом, длина стороны данного квадрата 6 см
2
Для нахождения периметра квадрата необходимо сложить длины всех его сторон. С помощью формулы это можно выразить так:
P = a+a+a+a.
Если извлечь корень из значения площади квадрата, а затем сложить получившуюся величину 4 раза, то можно найти периметр квадрата.
3
Пример: Дан квадрат с площадью 49 см². Требуется найти его периметр.
Решение:
Сначала необходимо извлечь корень площади квадрата: √49 = 7 см
Затем, вычислив длину стороны квадрата, можно вычислить и периметр: 7+7+7+7 = 28 см
Ответ: периметр квадрата площадью 49 см² составляет 28 см

Совет 2: Как найти сторону квадрата

Часто в геометрических задачах требуется найти длину стороны квадрата, если известны другие его параметры - такие, как площадь, диагональ или периметр.
Вам понадобится
  • Калькулятор
Инструкция
1
Если известна площадь квадрата, то для того, чтобы найти сторону квадрата, необходимо извлечь квадратный корень из числового значения площади (так как площадь квадрата равняется квадрату его стороны):
a=√S, где
a - длина стороны квадрата;

S - площадь квадрата.
Единицей измерения стороны квадрата будет являться линейная единица измерения длины, соответствующая единице измерения площади. Например, если площадь квадрата дана в сантиметрах квадратных, то длина его стороны получится просто в сантиметрах.
Пример:
Площадь квадрата составляет 9 квадратных метров.

Найти длину стороны квадрата.
Решение:
a=√9=3
Ответ:
Сторона квадрата равняется 3 метрам.
2
В том случае, когда известен периметр квадрата, для определения длины стороны нужно числовое значение периметра разделить на четыре (так как квадрат имеет четыре стороны одинаковой длины):
a=P/4, где:
a - длина стороны квадрата;

P - периметр квадрата.
Единицей измерения стороны квадрата будет являться та же самая линейная единица измерения длины как и у периметра. Например, если периметр квадрата задан в сантиметрах, то длина его стороны также получится в сантиметрах.
Пример:
Периметр квадрата составляет 20 метров.

Найти длину стороны квадрата.
Решение:
a=20/4=5
Ответ:
Длина стороны квадрата равняется 5 метрам.
3
Если известна длина диагонали квадрата, до длина его стороны будет равняться длине его диагонали, разделенной на корень квадратный из 2 (по теореме Пифагора, так как смежные стороны квадрата и диагональ составляют прямоугольный равнобедренный треугольник):
a=d/√2

(т.к. a^2+a^2=d^2), где:
a - длина стороны квадрата;

d - длина диагонали квадрата.
Единицей измерения стороны квадрата будет являться единица измерения длины та же самая, что и у диагонали. Например, если диагональ квадрата измерена в сантиметрах, то и длина его стороны получится в сантиметрах.
Пример:
Диагональ квадрата равняется 10 метров.

Найти длину стороны квадрата.
Решение:
a=10/√2, или приблизительно: 7,071
Ответ:
Длина стороны квадрата равняется 10/√2, или примерно 1,071 метра.
Источники:
  • стороны квадрата

Совет 3: Как находить периметр квадрата

Квадрат – красивая и простая плоская геометрическая фигура. Это прямоугольник с равными сторонами. Как же найти периметр квадрата, если известна длина его стороны?
Инструкция
1
Прежде всего, стоит вспомнить, что периметр есть ни что иное как сумма длин сторон геометрической фигуры. Рассматриваемый нами квадрат имеет четыре стороны. Более того, по определению квадрата, все эти стороны равны между собой.
Из этих предпосылок вытекает простая формула для нахождения периметра квадратапериметр квадрата равен длине стороны квадрата, умноженной на четыре:
Р = 4а, где а – длина стороны квадрата.
Видео по теме

Совет 4: Как найти длину квадрата

Периметром называют общую длину границы фигуры чаще всего на плоскости. Квадрат — правильный четырехугольник или ромб, у которого все углы прямые, или параллелограмм, у которого все стороны и углы равны.
Вам понадобится
  • Знания по геометрии.
Инструкция
1
Периметр квадрата равен сумме длин его сторон. Так как квадрат, по своей сути, есть четырехугольник, то и сторон у него четыре, а значит периметр равен сумме длин четырех сторон или P = a+b+c+d.
2
Квадрат, как видно из определения, правильная геометрическая фигура, а это значит, что все его стороны равны. Значит a=b=c=d. Следовательно P = a+a+a+a или P = 4*a.
3
Пусть сторона квадрата равна 4, то есть a=3. Тогда периметр или длина квадрата, по полученной формуле, будет равен P = 4*3 или P=12. Число 12 и будет являться длиной или, что одно и тоже, периметром квадрата.
Видео по теме
Обратите внимание
Периметр квадрата величина всегда положительная, как и любая другая длина.
Полезный совет
Аналогичным образом можно найти и периметр ромба, так как квадрат является частным случаем ромба с прямыми углами.

Совет 5: Как высчитывать периметр

Периметр характеризует длину замкнутого контура. Как и площадь, он может быть найден по другим величинам, приведенным в условии задачи. Задачи на нахождении периметра весьма часто встречаются в школьном курсе математики.
Инструкция
1
Зная периметр и сторону фигуры, можно найти другую ее сторону, а также площадь. Сам же периметр, в свою очередь, может быть найден по нескольким заданным сторонам либо по углу и сторонам, в зависимости от условий задачи. Также в ряде случаев его выражают через площадь. Наиболее просто находится периметр прямоугольника. Начертите прямоугольник с одной из сторон, равной а, и диагональю, равной d. Зная эти две величины, найдите по теореме Пифагора другую его сторону, которая является шириной прямоугольника. Найдя ширину прямоугольника, вычислите его периметр следующим образом: p=2(a+b). Эта формула справедлива для всех прямоугольников, поскольку у любого из них четыре стороны.
2
Обратите внимание на тот факт, что периметр треугольника в большинстве задач находят при наличии информации хотя бы об одном его угле. Однако, имеются и задачи, в которых все стороны треугольник известны, и тогда периметр может быть вычислен простым суммированием, без использования тригонометрических вычислений: p=a+b+c, где a, b и c - стороны. Но такие задачи встречаются в учебниках редко, поскольку способ их решения очевиден. Более сложные задачи по нахождению периметра треугольника решайте поэтапно. Например, начертите равнобедренный треугольник, у которого известны основание и угол при нем. Для того чтобы найти его периметр, вначале найдите стороны a и b следующим образом: b=c/2cosα. Поскольку a=b (треугольник равнобедренный), сделайте следующий вывод: a=b=c/2cosα.
3
Периметр многоугольника вычисляйте аналогичным образом, складывая длины всех его сторон: p=a+b+c+d+e+f и так далее. Если многоугольник правильный и вписан в окружность или описан около нее, вычислите длину одной из его сторон, а затем умножьте на их количество. Например, чтобы найти стороны шестиугольника, вписанного в окружность, действуйте следующим образом: a=R, где a - сторона шестиугольника, равная радиусу описанной окружности. Соответственно, если шестиугольник правильный, то его периметр равен: p=6a=6R. Если окружность вписана в шестиугольник, то сторона последнего равна: a=2r√3/3. Соответственно, периметр такой фигуры найдите следующим образом: p=12r√3/3.

Совет 6: Как вычислить периметр квадрата

Хоть слово «периметр» и произошло от греческого обозначения окружности, им принято называть суммарную длину границ любой плоской геометрической фигуры, включая квадрат. Вычисление этого параметра, как правило, сложности не представляет и может быть осуществлено несколькими способами, в зависимости от известных исходных данных.
Инструкция
1
Если известна длина стороны квадрата (t), то для нахождения его периметра (p) просто увеличьте эту величину в четыре раза: p=4*t.
2
Если длина стороны неизвестна, но в условиях задачи дана длина диагонали (c), то этого достаточно для вычисления длины сторон, а следовательно и периметра (p) многоугольника. Используйте теорему Пифагора, которая утверждает, что квадрат длины длинной стороны прямоугольного треугольника (гипотенузы) равен сумме квадратов длин коротких сторон (катетов). В прямоугольном треугольнике, составленном из двух смежных сторон квадрата и соединяющего их крайние точки отрезка, гипотенуза совпадает с диагональю четырехугольника. Из этого вытекает, что длина стороны квадрата равна отношению длины диагонали к квадратному корню из двойки. Используйте это выражение в формуле для вычисления периметра из предыдущего шага: p=4*c/√2.
3
Если дана лишь площадь (S) ограниченного периметром квадрата участка плоскости, то и этого будет достаточно, чтобы определить длину одной стороны. Так как площадь любого прямоугольника равна произведению длин его смежных сторон, то для нахождения периметра (p) извлеките квадратный корень из площади, а результат увеличьте в четыре раза: p=4*√S.
4
Если известен радиус описанной возле квадрата окружности (R), то для нахождения периметра многоугольника (p) умножьте его на восемь и разделите полученный результат на квадратный корень из двойки: p=8*R/√2.
5
Если окружность, радиус которой известен, вписана в квадрат, то вычисляйте его периметр (p) простым умножением радиуса (r) на восьмерку: P=8*r.
6
Если рассматриваемый квадрат в условиях задачи описан координатами своих вершин, то для вычисления периметра вам понадобятся данные лишь о двух вершинах, принадлежащих к одной из сторон фигуры. Определите длину этой стороны, исходя из все той-же теоремы Пифагора для треугольника, составленного из нее самой и ее проекций на оси координат, а полученный результат увеличьте в четыре раза. Так как длины проекций на координатные оси равны модулю разностей соответствующих координат двух точек (X₁;Y₁ и X₂;Y₂), то формулу можно записать так: p=4*√((X₁-X₂)²+(Y₁-Y₂)²).

Совет 7: Что такое периметр

Периметром в общем случае называют длину линии, которая ограничивает замкнутую фигуру. Для многоугольников периметром является сумма всех длин сторон. Эту величину можно измерить, а для многих фигур и просто рассчитать, если известны длины соответствующих элементов.
Вам понадобится
  • - линейка или рулетка;
  • - прочная нить;
  • - роликовый дальномер.
Инструкция
1
Чтобы измерить периметр произвольного многоугольника, измерьте при помощи линейки или другим измерительным прибором все его стороны, а затем найдите их сумму. Если дан четырехугольник со сторонами 5, 3, 7 и 4 см, которые измерены линейкой, найдите периметр, сложив их вместе Р=5+3+7+4=19 см.
2
Если же фигура произвольная и включает в себя не только прямые линии, то измерьте ее периметр обычной веревкой или ниткой. Для этого расположите ее так, чтобы она точно повторяла все линии, ограничивающие фигуру, и сделайте на ней отметку, если можно, просто обрежьте ее чтобы избежать путаницы. Затем при помощи рулетки или линейки, измерьте длину нитки, она и будет равна периметру данной фигуры. Обязательно следите за тем, чтобы нить максимально точно повторяла линию для большей точности результата.
3
Периметр сложной геометрической фигуры измеряйте роликовым дальномером (курвиметром). Для этого не линии намечается точка, в которую устанавливается ролик дальномера и прокатывается по ней, до возвращения в исходную точку. Дистанция, измеренная роликовым дальномером, и будет равна периметру фигуры.
4
Периметр некоторых геометрических фигур вычисляйте. Например, чтобы найти периметр любого правильного многоугольника (выпуклого многоугольника, стороны которого равны), длину стороны умножьте на количество углов или сторон (они равны). Чтобы найти периметр правильного треугольника со стороной 4 см умножьте это число на 3 (Р=4∙3=12 см).
5
Чтобы найти периметр произвольного треугольника, сложите длины всех его сторон. Если не даны все стороны, а есть углы между ними, найдите их по теореме синуса или косинуса. Если известны две стороны прямоугольного треугольника, третью найдите по теореме Пифагора и найдите их сумму. Например, если известно, что катеты прямоугольного треугольника равны 3 и 4 см, то гипотенуза будет равна √(3²+4²)=5 см. Тогда периметр Р=3+4+5=12 см.
6
Чтобы найти периметр круга, найдите длину окружности, которая его ограничивает. Для этого ее радиус r умножьте на число π≈3,14 и число 2 (P=L=2∙π∙r). Если известен диаметр, учитывайте, что он равен двум радиусам.
Источники:
  • периметру

Совет 8: Как найти периметр правильного многоугольника

Периметром многоугольника называют замкнутую ломаную линию, составленную из всех его сторон. Нахождение длины этого параметра сводится к суммированию длин сторон. Если все отрезки, образующие периметр такой двухмерной геометрической фигуры, имеют одинаковые размеры, многоугольник называется правильным. В этом случае вычисление периметра значительно упрощается.
Инструкция
1
В самом простом случае, когда известны длина стороны (а) правильного многоугольника и число вершин (n) в нем, для вычисления длины периметра (Р) просто перемножьте эти две величины: Р = а*n. Например, длина периметра правильного шестиугольника со стороной в 15 см должна быть равна 15*6=90 см.
2
Вычислить периметр такого многоугольника по известному радиусу (R) описанной около него окружности тоже возможно. Для этого придется сначала выразить длину стороны с использованием радиуса и количества вершин (n), а затем умножить полученную величину на число сторон. Чтобы рассчитать длину стороны умножьте радиус на синус числа Пи, поделенного на количество вершин, а результат удвойте: R*sin(π/n)*2. Если вам удобнее вычислять тригонометрическую функцию в градусах, замените число Пи на 180°: R*sin(180°/n)*2. Периметр вычислите умножением полученной величины на число вершин: Р = R*sin(π/n)*2*n = R*sin(180°/n)*2*n. Например, если шестиугольник вписан в круг с радиусом 50 см, его периметр будет иметь длину 50*sin(180°/6)*2*6 = 50*0,5*12 = 300 см.
3
Схожим способом можно посчитать периметр, не зная длины стороны правильного многоугольника, если он описан около окружности с известным радиусом (r). В этом случае формула для вычисления размера стороны фигуры будет отличаться от предыдущей лишь задействованной тригонометрической функцией. Замените в формуле синус на тангенс, чтобы получить такое выражение: r*tg(π/n)*2. Или для расчетов в градусах: r*tg(180°/n)*2. Для вычисления периметра увеличьте полученную величину в число раз, равное количеству вершин многоугольника: Р = r*tg(π/n)*2*n = r*tg(180°/n)*2*n. Например, периметр восьмиугольника, описанного возле круга с радиусом в 40 см, будет приблизительно равен 40*tg(180°/8)*2*8 ≈ 40*0,414*16 = 264,96 см.
Источники:
  • периметр многоугольника формула

Совет 9: Как найти площадь и периметр квадрата

Квадрат представляет собой геометрическую фигуру, состоящую из четырех сторон одинаковой длины и четырех прямых углов, каждый из которых равен 90°. Определение площади или периметра четырехугольника, причем любого, требуется не только при решении задач по геометрии, но и в повседневной жизни. Эти умения могут стать полезными, например, во время ремонта при расчете нужного количества материалов - покрытий для пола, стен или потолка, а также для разбивки газонов и грядок и т.д.
Инструкция
1
Для определения площади квадрата умножьте величину длины на величину ширины. Так как в квадрате длина и ширина одинаковы, то значение одной стороны достаточно возвести в квадрат. Таким образом, площадь квадрата равна длине его стороны, возведенной в квадрат. Единицей измерения площади могут быть квадратные миллиметры, сантиметры, дециметры, метры, километры.Чтобы определить площадь квадрата, можно воспользоваться формулойS = aa, где S – площадь квадрата,а - сторона квадрата.
2
Пример № 1. Комната имеет форму квадрата. Сколько ламината (в кв.м) потребуется для того, чтобы полностью покрыть пол, если длина одной стороны комнаты составляет 5 метров.Запишите формулу: S = aa. Подставьте в нее указанные в условии данные.Так как а = 5 м, следовательно, площадь будет равнаS (комнаты) = 5х5= 25 кв.м, значит, и S (ламината) = 25 кв.м.
3
Периметр представляет собой общую длину границы фигуры. В квадрате периметр – это длина всех четырех, причем одинаковых, сторон. То есть, периметр квадрата представляет собой сумму всех его четырех сторон. Чтобы вычислить периметр квадрата, достаточно знать длину одной его стороны. Измеряется периметр в миллиметрах, сантиметрах, дециметрах, метрах, километрах.Для определения периметра имеется формула:P = a + а + а + а илиP = 4a, гдеР – периметр,а – длина стороны.
4
Пример № 2. Для отделочных работ помещения в форме квадрата требуются потолочные плинтуса. Вычислите общую длину (периметр) плинтусов, если величина одной стороны комнаты равна 6 метров. Запишите формулу P = 4a.Подставьте в нее указанные в условии данные:Р (комнаты) = 4 х 6 = 24 метра.Следовательно, длина потолочных плинтусов тоже будет равна 24 метров.
Видео по теме
Источники:
  • формула площади и периметра квадрата
Обратите внимание
Для квадрата справедливы следующие определения:
Квадрат - это прямоугольник, который обладает равными между собой сторонами.
Квадрат - это особая разновидность ромба, у которого каждый из углов равен 90 градусам.
Являясь правильным четырехугольником, вокруг квадрата можно описать или вписать окружность. Радиус вписанной в квадрат окружность можно найти по формуле:
R = t/2, где t - сторона квадрата.
Если же окружность описана вокруг него, то ее радиус находится так:
R = (√2*t)/2
Исходя из данных формул, можно вывести новые для нахождения периметра квадрата:
P = 8*R, где R - радиус вписанной окружности;
P = 4*√2*R, где R - радиус описанной окружности.
Квадрат является уникальной геометрической фигурой, поскольку он абсолютно симметричен, независимо от того, как и где провести ось симметрии.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500