Совет 1: Как найти площадь сечения шара

Пусть дан шар с радиусом R, который на некотором расстоянии b от центра пересекает плоскость. Расстояние b меньше или равно радиусу шара. Требуется найти площадь S получающегося при этом сечения.
Как найти площадь сечения шара
Инструкция
1
Очевидно, что если расстояние от центра шара до плоскости равно радиусу плоскости, то плоскость касается шара только в одной точке, и площадь сечения будет равна нулю, то есть если b = R, то S = 0. Если b = 0, то секущая плоскость проходит через центр шара. В этом случае сечение будет представлять собой круг, радиус которого совпадает с радиусом шара. Площадь этого круга будет, согласно формуле, равна S = πR^2.
2
Эти два крайних случая дают границы, между которыми всегда будет лежать искомая площадь: 0 < S < πR^2. При этом любое сечение шара плоскостью всегда является кругом. Следовательно, задача сводится к тому, чтобы найти радиус окружности сечения. Тогда площадь этого сечения вычисляется по формуле площади круга.
3
Поскольку расстояние от точки до плоскости определяется как длина отрезка, перпендикулярного плоскости и начинающегося в точке, второй конец этого отрезка будет совпадать с центром окружности сечения. Такой вывод вытекает из определения шара: очевидно, что все точки окружности сечения принадлежат сфере, а следовательно, лежат на равном расстоянии от центра шара. Это значит, что каждая точка окружности сечения может считаться вершиной прямоугольного треугольника, гипотенузой которого служит радиус шара, одним из катетов — перпендикулярный отрезок, соединяющий центр шара с плоскостью, а вторым катетом — радиус окружности сечения.
4
Из трех сторон этого треугольника заданы два — радиус шара R и расстояние b, то есть гипотенуза и катет. По теореме Пифагора длина второго катета должна быть равна √(R^2 - b^2). Это и есть радиус окружности сечения. Подставляя найденное значение радиуса в формулу площади круга, легко прийти к выводу, что площадь сечения шара плоскостью равна:S = π(R^2 - b^2).В частных случаях, когда b = R или b = 0, выведенная формула полностью согласуется с уже найденными результатами.
Видео по теме
Источники:
  • сечение шара плоскостью

Совет 2 : Как найти площадь шара

Все планеты солнечной системы имеют форму шара. Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств. Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара. Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.
Как найти площадь шара
Инструкция
1
Если взять полукруг или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара, и ее сечением является окружность. От шара она отличается тем, что является полой. Ось как у шара, так и у сферы совпадает с диаметром и проходит через центр. Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство планет и небесных тел. В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения - круги разной площади.
2
Шар и сфера - взаимозаменяемые тела, в отличие от конуса, несмотря на то, что конус также является телом вращения. Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она вращается - по горизонтали или по вертикали. Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара, и не считается взаимозаменяемым телом вращения.
3
Самый большой из возможных кругов получается при сечении шара плоскостью, проходящей через центр О. Все круги, которые проходят через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра. Через две точки A и B, располагающиеся в любом месте поверхности шара, может проходить бесконечное количество кругов или окружностей. Именно по этой причине через полюса Земли может быть проведено неограниченное количество меридианов.
4
При нахождении площади шара рассматривается, прежде всего, площадь сферической поверхности.Площадь шара, а точнее, сферы, образующей его поверхность, может быть рассчитана на основании площади круга с тем же радиусом R. Поскольку площадь круга есть произведение полуокружности на радиус, его можно рассчитать следующим образом:S = ?R^2Так как через центр шара проходят четыре основных больших круга, то, соответственно площадь шара (сферы) равна:S = 4 ?R^2
5
Данная формула может быть полезна в том случае, если известен либо диаметр, либо радиус шара или сферы. Однако, эти параметры приведены в качестве условий не во всех геометрических задачах. Существуют и такие задачи, в которых шар вписан в цилиндр. В этом случае, следует воспользоваться теоремой Архимеда, суть которой заключается в том, что площадь поверхности шара в полтора раза меньше полной поверхности цилиндра:S = 2/3 S цил., где S цил. -площадь полной поверхности цилиндра.
Видео по теме

Совет 3 : Как найти объем сферы

Шар - это простейшая объемная геометрическая фигура, для указания размеров которой достаточно всего одного параметра. Границы этой фигуры принято называть сферой. Объем пространства, ограничиваемого сферой, можно вычислить как с помощью соответствующих тригонометрических формул, так и подручными средствами.
Как найти объем сферы
Инструкция
1
Используйте классическую формулу объема (V) сферы, если из условий известен ее радиус (r) - возведите радиус в третью степень, умножьте на число Пи, а результат увеличьте еще на треть. Записать эту формулу можно так: V=4*π*r³/3.
2
Если есть возможность измерить диаметр (d) сферы, то поделите его пополам и используйте как радиус в формуле из предыдущего шага. Или найдите одну шестую часть от возведенного в куб диаметра, умноженного на число Пи: V=π*d³/6.
3
Если известен объем (v) цилиндра, в который вписана сфера, то для нахождения ее объема определите, чему равны две трети от известного объема цилиндра: V=⅔*v.
4
Если известна средняя плотность (p) материала, из которого состоит сфера, и ее масса (m), то этого тоже достаточно для определения объема - разделите второе на первое: V=m/p.
5
Воспользуйтесь какими-либо мерными емкостями в качестве подручных средств для измерения объема сосуда сферической формы. Например, наполните его водой, измеряя с помощью мерной емкости количество заливаемой жидкости. Полученное значение в литрах переведите в кубические метры - эта единица принята в международной системе СИ для измерения объема. В качестве коэффициента перевода из литров в кубометры используйте число 1000, так как один литр приравнен к одному кубическому дециметру, а их в каждый кубический метр вмещается ровно тысяча штук.
6
Используйте принцип измерения, противоположный описанному в предыдущем шаге, если тело в форме сферы нельзя наполнить жидкостью, но можно погрузить в нее. Заполните мерный сосуд водой, отметьте уровень, погрузите измеряемое сферическое тело в жидкость и по разнице уровней определите количество вытесненной воды. Затем переведите полученный результат из литров в кубометры так же, как это описано в предыдущем шаге.
Видео по теме
Источники:
  • объем полусферы

Совет 4 : Как вычислить объем шара

Шаром называют простейшую объемную фигуру геометрически правильной формы, все точки пространства внутри границ которой удалены от ее центра на расстояние, не превышающее радиуса. Поверхность, образуемая множеством максимально удаленных от центра точек, называется сферой. Для количественного выражения меры пространства, заключенного внутри сферы, предназначен параметр, который называется объемом шара.
Как вычислить объем шара
Инструкция
1
Если требуется измерить объем шара не теоретически, а только подручными средствами, то сделать это можно, например, определив объем вытесненной им воды. Этот способ применим в том случае, когда есть возможность поместить шар в какую-либо соразмерную ему емкость - мензурку, стакан, банку, ведро, бочку, бассейн и т.д. В этом случае перед помещением шара отметьте уровень воды, сделайте это повторно после полного его погружения, а затем найдите разность между отметками. Обычно мерная емкость заводского производства имеет деления, показывающие объем в литрах и производных от него единицах - миллилитрах, декалитрах и т.д. Если полученное значение надо перевести в кубические метры и кратные ему единицы объема, то исходите из того, что один литр соответствует одному кубическому дециметру или одной тысячной доле кубометра.
2
Если известен материал, из которого изготовлен шар, и плотность этого материала можно узнать, например, из справочника, то определить объем можно взвесив этот предмет. Просто разделите результат взвешивания на справочную плотность вещества изготовления: V=m/p.
3
Если радиус шара известен из условий задачи или его можно измерить, то для вычисления объема можно использовать соответствующую математическую формулу. Умножьте учетверенное число Пи на третью степень радиуса, а полученный результат разделите на тройку: V=4*π*r³/3. Например, при радиусе в 40см объем шара составит 4*3,14*40³/3 = 267946,67см³ ≈ 0,268м³.
4
Измерить диаметр чаще бывает проще, чем радиус. В этом случае нет необходимости делить его пополам для использования с формулой из предыдущего шага - лучше упростить саму формулу. В соответствии с преобразованной формулой умножьте число Пи на диаметр в третьей степени, а результат разделите на шестерку: V=π*d³/6. Например, шар диаметром в 50см должен иметь объем в 3,14*50³/6 = 65416,67см³ ≈ 0,654м³.

Совет 5 : Как найти площадь поверхности шара

Когда говорят о площади поверхности шара, то вполне понятно о чем идет речь, даже несмотря на то, что простого и однозначного определения этого понятия нет в школьных учебниках. Но с непосредственным вычислением этого параметра проблем нет - здесь вступают в действие формулы.
Как найти площадь поверхности шара
Инструкция
1
Используйте самую простую из формул вычисления площади поверхности шара (S), если известен его диаметр (D) или радиус (R). При этом придется использовать число Пи - математическую константу, показывающую неизменное отношение длины окружности к диаметру круга. Эта константа имеет бесконечное число знаков после десятичной запятой, поэтому вам придется определиться с необходимой точностью вычислений и округлить ее. Сделав это, умножьте число Пи на возведенный в квадрат диаметр шара - полученный результат и будет площадью сферы: S=π*D². Если известен не диаметр, а радиус, то в формулу надо добавить коэффициент, увеличивающий ее в четыре раза: S=4*π*R².
2
Если в условиях задачи сфера задана своими координатами в трехмерной декартовой системе, то начните расчет площади поверхности с нахождения ее радиуса. Для этого вам понадобятся координаты двух точек - являющейся центром шара (X₀,Y₀,Z₀) и любой из максимально удаленных от центра, то есть лежащих на поверхности сферы (X,Y,Z). Радиус сферы (R) будет равен квадратному корню из суммы квадратов попарных разностей координат по каждой из осей: R=√((X-X₀)²+(Y-Y₀)²+(Z-Z₀)²). Затем подставьте полученное значение в формулу из предыдущего шага. В общем виде она теперь будет выглядеть так: S = 4*π*(√((X-X₀)²+(Y-Y₀)²+(Z-Z₀)²))² = 4*π*((X-X₀)²+(Y-Y₀)²+(Z-Z₀)²).
3
Если вам требуется, не вдаваясь в подробности вычислений, просто получить результат, то воспользуйтесь каким-либо из онлайн-калькуляторов. Например, тем, что размещен на странице http://board74.ru/articles/geometry/sphere.html. Перейдите на эту страницу и введите радиус шара в поле левее кнопки Calculate. Затем кликните кнопку и увидите результат расчета строкой ниже, рядом с формулой, использованной при вычислении. Здесь площадь поверхности сферы названа ее «боковой» поверхностью.
Видео по теме
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500