Совет 1: Как найти центр тяжести треугольника

Треугольник – одна из основных геометрических фигур. И только он имеет «замечательные» точки. К ним относится, например, центр тяжести – точка, на которую приходится вес всей фигуры. Где же находится эта «замечательная» точка и как ее найти?
Как найти центр тяжести треугольника
Вам понадобится
  • карандаш, линейка
Инструкция
1
Начертите сам треугольник. Для этого возьмите линейку и проведите карандашом отрезок. Потом начертите ещё один отрезок, начиная от одного из концов предыдущего. Замкните фигуру, соединив две оставшиеся свободные точки отрезков. Получился треугольник. Именно его центр тяжести предстоит искать.
2
Возьмите линейку и измерьте длину одной из сторон. Найдите середину этой стороны и отметьте её карандашом. Проведите отрезок из противоположной вершины к намеченной точке. Получившийся отрезок называется медианой.
3
Приступите ко второй стороне. Измерьте её длину, поделите на две равные части и проведите медиану из лежащей напротив вершины.
4
То же самое проделайте с третьей стороной. Обратите внимание на то, что, если вы все сделали правильно, то медианы пересекутся в одной точке. Это и будет центр тяжести или, как его ещё называют, центр масс треугольника.
5
Если перед вами стоит задача, найти центр тяжести равностороннего треугольника, то проведите высоту из каждой вершины фигуры. Для этого возьмите линейку с прямым углом и одной из сторон, прислоните к основанию треугольника, а вторую направьте к противолежащей вершине. То же самое проделайте с остальными сторонами. Точка пересечения будет являться центром тяжести. Особенность равносторонних треугольников заключается в том, что одни и те же отрезки являются и медианами, и высотами, и биссектрисами.
6
Центр тяжести любого треугольника делит медианы на два отрезка. Их соотношение составляет 2:1, если смотреть от вершины. Если треугольник поместить на булавку таким образом, что центроид окажется на её острие, то он не упадет, а будет находиться в равновесии. Также центр тяжести является той точкой, на которую приходится вся масса, размещенная на вершинах треугольника. Проделайте этот опыт и убедитесь в том, что эта точка неспроста называется «замечательной».
Обратите внимание
В заданиях может быть указано, что необходимо найти центр тяжести, центр масс или центроид. Все три названия обозначают одно и то же.
Источники:
  • Вся элементарная математика
  • центр тяжести у прямоугольного треугольника

Совет 2 : Как найти длину стороны в равнобедренном треугольнике

Равнобедренным называется треугольник, в котором длины двух его сторон одинаковы. Чтобы вычислить размер какой-либо из сторон надо знать длину другой стороны и один из углов или радиус описанной вокруг треугольника окружности. В зависимости от известных величин, для расчетов надо использовать формулы, вытекающие из теорем синуса или косинуса, либо из теоремы о проекциях.
Как найти длину стороны в равнобедренном треугольнике
Инструкция
1
Если известна длина основания равнобедренного треугольника (A) и величина прилежащего к нему угла (угла между основанием и любой боковой стороной) (α), то вычислить длину каждой из боковых сторон (B) можно исходя из теоремы косинусов. Она будет равна частному от деления длины основания на удвоенное значение косинуса известного угла B=A/(2*cos(α)).
2
Длину стороны равнобедренного треугольника, являющейся его основанием (A), можно вычислить исходя из той же теоремы косинусов, если известны длина его боковой стороны (B) и угол между ней и основанием (α). Она будет равна удвоенному произведению известной стороны на косинус известного угла A=2*B*cos(α).
3
Другой способ нахождения длины основания равнобедренного треугольника можно использовать, если известна величина противолежащего ему угла (β) и длина боковой стороны (B) треугольника. Она будет равна удвоенному произведению длины боковой стороны на синус половины величины известного угла A=2*B*sin(β /2).
4
Аналогично можно вывести и формулу вычисления боковой стороны равнобедренного треугольника. Если известна длина основания (A) и величина угла между равными сторонами (β), то длина каждой из них (B) будет равна частному от деления длины основания на удвоенный синус половины величины известного угла B=A/(2*sin(β /2)).
5
Если известен радиус описанной вокруг равнобедренного треугольника окружности (R), то длины его сторон можно рассчитать, зная величину одного из углов. Если известна величина угла между боковыми сторонами (β), то длина стороны, являющейся основанием (A), будет равна удвоенному произведению радиуса описанной окружности на синус этого угла A=2*R*sin(β).
6
Если известны радиус описанной окружности (R) и величина угла, прилегающего к основанию (α), то длина боковой стороны (B) будет равна удвоенному произведению длины основания на синус известного угла B=2*R*sin(α).
Источники:
  • как вычислить сторону равнобедренного треугольника

Совет 3 : Как найти третий угол в треугольнике

Треугольником называют часть плоскости, ограниченную тремя отрезками прямых (стороны треугольника), имеющих попарно по одному общему концу (вершины треугольника). Углы треугольника можно найти по Теореме о сумме углов треугольника.
Как найти третий угол в треугольнике
Инструкция
1
Теорема о сумме углов треугольника гласит, что сумма углов треугольника составляет 180°. Рассмотрим несколько примеров задач с разными заданными параметрами. Во-первых, пусть заданы два угла α = 30°, β = 63°. Необходимо найти третий угол γ. Находим его непосредственно из теоремы о сумме углов треугольника: α + β + γ = 180° => γ = 180° - α - β = 180° - 30° - 63° = 87°.
2
Теперь рассмотрим задачу нахождения третьего угла треугольника более общего вида. Пусть нам известны три стороны треугольника |AB| = a, |BC| = b, |AC| = c. И необходимо найти три угла α, β и γ. Воспользуемся теоремой косинусов для нахождения угла β. Согласно теореме косинусов квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон и косинуса угла, заключенного между ними. Т.е. в наших обозначениях c^2 = a^2 + b^2 – 2 * a * b * cos β => cos β = (a^2 + b^2 - c^2) / (2 *a * b).
3
Далее воспользуемся теоремой синусов для нахождения угла α. Согласно этой теореме стороны треугольника пропорциональны синусам противолежащих углов. Выразим из этого соотношения синус угла α: a/sin α = b/sin β => sin α = b * sin β / a. Третий угол находим по уже известной нам теореме о сумме углов треугольника по формуле γ = 180° - (α + β).
4
Приведем пример решения подобной задачи. Пусть даны стороны треугольника a = 4, b = 4 * √2, c = 4. Из условия мы видим, что это равнобедренный прямоугольный треугольник. Т.е. в результате мы должны получить углы 90°, 45° и 45°. Посчитаем эти углы по приведенному выше способу. По теореме косинусов находим угол β: cos β = (16 + 32 - 16) / (2 * 16 * √2) = 1 / √2 = √2 / 2 => β = 45°. Далее находим угол α по теореме синусов: sin α = 4 * √2 * √2 / (2 * 4) = 1 => α = 90°. И наконец, применив теорему о сумме углов треугольника, получаем угол γ = 180° - 45° - 90° = 45°.
Обратите внимание
Заметим, что в треугольнике не менее двух углов должны быть острыми (т.е. меньше 90°). Поэтому посчитав третий угол проверьте, удовлетворяют ли углы треугольника заданному условию. Если нет – вы допустили ошибку в вычислениях. В любом случаем будет полезно сложить все три угла еще раз и убедиться, что получается 180°.
Полезный совет
Для нахождения величин углов по значениям их тригонометрических функций удобно пользоваться таблицами Брадиса.
Источники:
  • Таблицы Брадиса для нахождения величин тригонометрических функций

Совет 4 : Как найти сторону квадратного треугольника

Квадратный треугольник более точно называется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры подробно рассматриваются в математической дисциплине тригонометрии.
Как найти сторону квадратного треугольника
Вам понадобится
  • - лист бумаги;
  • - ручка;
  • - таблицы Брадиса;
  • - калькулятор.
Инструкция
1
Найдите сторону прямоугольного треугольника с помощью теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза треугольника, a и b – его катеты. Чтобы применить это уравнение, нужно знать длину любых двух сторон прямоугольного треугольника.
2
Если по условиям заданы размеры катетов, отыщите длину гипотенузы. Для этого с помощью калькулятора извлеките квадратный корень из суммы катетов, каждый из которых предварительно возведите в квадрат.
3
Вычислите длину одного из катетов, если известны размеры гипотенузы и другого катета. При помощи калькулятора извлеките квадратный корень из разности гипотенузы в квадрате и известного катета, также возведенного в квадрат.
4
Если в задаче заданы гипотенуза и один из прилежащих к ней острых углов, используйте таблицы Брадиса. В них приведены значения тригонометрических функций для большого числа углов. Воспользуйтесь калькулятором с функциями синуса и косинуса, а также теоремами тригонометрии, которые описывают соотношения между сторонами и углами прямоугольного треугольника.
5
Найдите катеты при помощи основных тригонометрических функций: a = c*sin α, b = c*cos α, где а – катет, противолежащий к углу α, b – катет, прилежащий к углу α. Подобным образом посчитайте размер сторон треугольника, если заданы гипотенуза и другой острый угол: b = c*sin β, a = c*cos β, где b – катет, противолежащий к углу β, а – катет, прилежащий к углу β.
6
В случае, когда известен катет a и прилежащий к нему острый угол β, не забывайте, что в прямоугольном треугольнике сумма острых углов всегда равна 90°: α + β = 90°. Отыщите значение угла, противолежащего к катету а: α = 90° – β. Или воспользуйтесь тригонометрическими формулами приведения: sin α = sin (90° – β) = cos β; tg α = tg (90° – β) = ctg β = 1/tg β.
7
Если известен катет а и противолежащий к нему острый угол α, при помощи таблиц Брадиса, калькулятора и тригонометрических функций вычислите гипотенузу по формуле: c=a*sin α, катет: b=a*tg α.
Видео по теме
Источники:
  • Как найти стороны прямоугольного треугольника по катету и острому углу
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500