Совет 1: Как найти площадь осевого сечения конуса

Конус представляет собой геометрическое тело, основание которого представляет собой круг, а боковая поверхности — все отрезки, проведенные из точки, находящейся вне плоскости основания, к этому основанию. Прямой конус, который обычно рассматривается в школьном курсе геометрии, можно представить как тело, образованное вращением прямоугольного треугольника вокруг одного из катетов. Перпендикулярным сечением конуса является плоскость, проходящая через его вершину перпендикулярно основанию.
Вам понадобится
  • Чертеж конуса с заданными параметрами
  • Линейка
  • Карандаш
  • Математические формулы и определения
  • Высота конуса
  • Радиус окружности основания конуса
  • Формула площади треугольника
Инструкция
1
Начертите конус с заданными параметрами. Обозначьте центр окружности как О, а вершину конуса — как P. Вам необходимо знать радиус основания и высоту конуса. Вспомните свойства высоты конуса. Она представляет собой перпендикуляр, проведенный из вершины конуса к его основанию. Точка пересечения высоты конуса с плоскостью основания у прямого конуса совпадает с центром окружности основания. Постройте осевое сечение конуса. Оно образовано диаметром основания и образующими конуса, которые проходят через точки пересечения диаметра с окружностью. Обозначьте полученные точки как А и В.
Постройте осевое сечение конуса
2
Осевое сечение образовано двумя прямоугольными треугольниками, лежащими в одной плоскости и имеющими один общий катет. Вычислить площадь осевого сечения можно двумя способами. Первый способ — найти площади получившихся треугольников и сложить их вместе. Это наиболее наглядный способ, но по сути он ничем не отличается от классического вычисления площади равнобедренного треугольника. Итак, у вас получилось 2 прямоугольных треугольника, общим катетом которых является высота конуса h, вторыми катетами — радиусы окружности основания R, а гипотенузами — образующие конуса. Поскольку все три стороны этих треугольников равны между собой, то и сами треугольники тоже получились равными, согласно третьему свойству равенства треугольников. Площадь прямоугольного треугольника равна половине произведения его катетов, то есть S=1/2Rh. Площадь двух треугольников соответственно будет равна произведению радиуса окружности основания на высоту, S=Rh.
3
Осевое сечение чаще всего рассматривают как равнобедренный треугольник, высотой которого является высота конуса. В данном случае это треугольник АPВ, основание которого равно диаметру окружности основания конуса D, а высота равна высоте конуса h. Площадь его вычисляется по классической формуле площади треугольника, то есть в итоге получаем ту же самую формулу S = 1/2Dh = Rh, где S – площадь равнобедренного треугольника, R - радиус окружности основания, а h — высота треугольника, являющаяся одновременно и высотой конуса.

Совет 2: Как найти площадь конуса

Конус — тело, полученное объединением всех лучей, исходящих из одной точки, которая называется вершиной конуса и проходящих через плоскую поверхность, которая называется основанием конуса. Под площадью конуса понимают площадь его боковой поверхности и площадь основания, которое является окружностью.
Вам понадобится
  • Элементарные знания стереометрии.
Инструкция
1
Вычислим площадь боковой поверхности. Пусть нам дан радиус основания R и длина образующей конуса l. Тогда площадь боковой поверхности конуса равна П*R*l, где П-число Пи.
2
Теперь вычислим площадь основания конуса. Так как основанием конуса является окружность, то площадь основания равна площади этой окружности и равна П*R*R.
3
Окончательная площадь конуса равна сумме площадей его поверхности и основания. То есть S = П*R*R + П*R*l. Ну, или после преобразования, S = П*R(R + l).
Видео по теме
Обратите внимание
Площадь - величина положительная, и если вы получили отрицательное значение, значит, вы где-то ошиблись. Внимательно перепроверьте все свои расчеты.
Полезный совет
Зная площадь конуса и радиус его основания, можно найти длину его направляющей, а зная площадь и длину направляющей - радиус его основания.
Источники:
  • как найти поверхность конуса

Совет 3: Как построить сечение конуса

Построение сечения конуса не такая уж сложная задача. Главное - соблюдать строгую последовательность действий. Тогда данная задача будет легко выполнима и не потребует от Вас больших трудозатрат.
Вам понадобится
  • - бумага;
  • - ручка;
  • - циркль;
  • - линейка.
Инструкция
1
При ответе на этот вопрос, сначала следует определиться – какими параметрами задано сечение.
Пусть это будет прямая пересечения плоскости основания конуса l с плоскостью сечения и точка О, которая является местом пересечения высоты конуса с его сечением.

Построение иллюстрирует рис.1. Первый шаг построения сечения – это проведение через центр сечения его диаметра, продленного до l перпендикулярно этой линии. В итоге получается точка L. Далее через т.О проведите прямую LW, и постройте две направляющие конуса, лежащие в главном сечении О2М и О2С . В пересечении этих направляющих лежат точка Q, а также уже показанная точка W. Это первые две точки искомого сечения.
Как построить сечение конуса
2
Теперь проведите в основании конуса диаметр ВВ1 перпендикулярный МС и постройте образующие перпендикулярного сечения О2В и О2В1. В этом сечении через т.О проведите прямую RG, параллельную ВВ1. Т.R и т.G - еще две точки искомого сечения. Если бы контур сечения бал известен, то его можно было бы построить уже на этой стадии. Однако это вовсе не эллипс, а нечто эллипсообразное, имеющее симметрию относительно отрезка QW. Поэтому следует строить как можно больше точек сечения, чтобы соединяя их в дальнейшем плавной кривой получить наиболее достоверный эскиз.
3
Постройте произвольную точку сечения. Для этого проведите в основании конуса произвольный диаметр AN и постройте соответствующие направляющие О2A и O2N. Через т.О проведите прямую, проходящую через PQ и WG, до ее пересечения с только что построенными направляющими в точках P и E. Это еще две точки искомого сечения. Продолжая точно так же и дальше, можно набрать сколь угодно много искомых точек.
4
Правда, процедуру их получения можно немного упростить пользуясь симметрией относительно QW. Для этого можно в плоскости искомого сечения провести прямые SS’, параллельные RG до пересечения их с поверхность конуса. Построение завершается скруглением построенной ломаной из хорд. Достаточно построить половину искомого сечения в силу уже упомянутой симметрии относительно QW.
Видео по теме

Совет 4: Как найти площадь осевого сечения усеченного конуса

Чтобы решить данную задачу, необходимо вспомнить, что такое усеченный конус и какими свойствами он обладает. Обязательно сделайте чертеж. Это позволит определить, какую геометрическую фигуру представляет собой сечение конуса. Вполне возможно, что после этого решение задачи уже не будет представлять для вас сложности.
Инструкция
1
Круглый конус – тело, полученное путем вращения треугольника вокруг одного из его катетов. Прямые, исходящие из вершины конуса и пересекающие его основание, называются образующими. Если все образующие равны, то конус является прямым. В основании круглого конуса лежит круг. Перпендикуляр, опущенный на основание из вершины, является высотой конуса. У круглого прямого конуса высота совпадает с его осью. Ось – это прямая, соединяющая вершину с центром основания. Если горизонтальная секущая плоскость кругового конуса параллельна основанию, то его верхнее основание представляет собой круг.
2
Поскольку в условии задачи не оговорено, какой именно конус дается в данном случае, можно сделать вывод, что это круглый прямой усеченный конус, горизонтальное сечение которого параллельно основанию. Его осевое сечение, т.е. вертикальная плоскость, которая проходит через ось круглого усеченного конуса, представляет собой равнобочную трапецию. Все осевые сечения круглого прямого конуса равны между собой. Следовательно, чтобы найти площадь осевого сечения, требуется найти площадь трапеции, основаниями которой являются диаметры оснований усеченного конуса, а боковые стороны – его образующие. Высота усеченного конуса является одновременно высотой трапеции.
3
Площадь трапеции определяется по формуле:S = ½(a+b) h, где S – площадь трапеции;a – величина нижнего основания трапеции;b – величина ее верхнего основания;h – высота трапеции.
4
Поскольку в условии не оговорено, какие именно величины даны, можно считать, что диаметры обеих оснований и высота усеченного конуса известны: AD = d1 – диаметр нижнего основания усеченного конуса;BC = d2 – диаметр его верхнего основания; EH = h1 – высота конуса.Таким образом, площадь осевого сечения усеченного конуса определяется: S1 = ½ (d1+d2) h1
Источники:
  • площадь усеченного конуса

Совет 5: Как найти площадь осевого сечения прямоугольного треугольника в конусе

При вращении прямоугольного треугольника вокруг одного из его катетов образуется фигура вращения, называемая конусом. Конус — геометрическое тело с одной вершиной и круглым основанием.
Инструкция
1
Расположите чертежный угольник, совместив один из катетов с плоскостью стола. Не отрывая сторону угольника от поверхности стола поворачивайте угольник вокруг второго катета. Сохраняйте вертикальное положение чертежного инструмента при его вращении, чтобы вершина угольника оставалась неподвижной.
2
После полного оборота вершина угольника очертит на столе окружность, ограничивающую основание полученного тела вращения. Вершина прямого угла останется в центре круглого основания с радиусом, равным катету, лежащему на плоскости стола. Катет, послуживший осью вращения, становится высотой образованного конуса. Вершина конуса расположена точно над центром окружности в основании. Гипотенуза угольника является образующей конуса.
3
Осевое сечение принадлежит плоскости, в которой расположена ось конуса. Очевидно, что плоскость осевого сечения перпендикулярна основанию конуса и разрезает конус на две равные части. Фигура, получившаяся в плоскости осевого сечения — равнобедренный треугольник. Основание этого треугольника равно диаметру окружности основания конуса, боковые стороны равны образующей конуса.
4
Высота равнобедренного треугольника в плоскости осевого сечения, опущенная на основание, равна высоте конуса и одновременно является осью симметрии. Ось симметрии делит фигуру осевого сечения на два равных прямоугольных треугольника. Катеты этих прямоугольных треугольников — радиус окружности в основании конуса и высота конуса. Гипотенузы полученных прямоугольных треугольников равны образующей конуса.
5
Площадь равнобедренного треугольника в сечении конуса равна половине произведения диаметра основания конуса на высоту конуса. Площадь S прямоугольного треугольника в осевом сечении равна половине площади полного сечения и может быть вычислена по формуле:
S= d*h/4 где d -диаметр основания, h — высота конуса.
Полезный совет
Площадь осевого сечения конуса вычисляется по формуле площади трапеции. В этом случае необходимо знать оба радиуса оснований, высоту и серединную линию.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше