Совет 1: Как решать уравнения с дробями

Уравнения с дробями - особый вид уравнений, имеющий свои специфические особенности и тонкие моменты. Попробуем в них разобраться.
Инструкция
1
Пожалуй, самый очевидный момент здесь - это, конечно, знаменатель. Числовые дроби не представляют никакой опасности (дробные уравнения, где во всех знаменателях стоят только числа, вообще будут линейными), а вот если в знаменателе стоит переменная, то это обязательно нужно учитывать и прописывать. Во-первых, это значит, что значение х, обращающее в 0 знаменатель, корнем быть не может, и вообще нужно отдельно прописать тот факт, что икс не может равняться этому числу. Даже если у вас получится, что при подстановке в числитель всё прекрасно сходится и удовлетворяет условиям. Во-вторых, мы не можем умножать или делить обе части уравнения на выражение, равное нулю.
2
После этого решение такого уравнения сводится к переносу всех его членов в левую часть так, чтобы в правой остался 0.

Нужно привести все члены к общему знаменателю, домножив, где нужно, числители на недостающие выражения.
Далее решаем обычное уравнение, написанное в числителе. Можем выносить общие множители за скобки, применять формулы сокращённого умножения, приводить подобные, вычислять корни квадратного уравнения через дискриминант и т.д.
3
В итоге должно получиться разложение на множители в виде произведения скобок (х-(i-ый корень)). Также сюда могут входить многочлены, не имеющие корней, например, квадратный трёхчлен с дискриминантом, меньшим нуля (если, конечно, в задаче требуется найти только действительные корни, как чаще всего и бывает).
Обязательно нужно разложить на множители и знаменатель с целью нахождения там скобок, уже содержащихся в числителе. Если в знаменателе стоят выражения типа (х-(число)), то лучше при приведении к общему знаменателю стоящие в нём скобки не перемножать "в лоб", а оставить в виде произведения исходных простых выражений.
Одинаковые скобки в числителе и знаменателе можно сократить, прописав предварительно, как говорилось выше, условия на х.
Ответ записывается в фигурных скобках, как множество значений х, либо просто перечислением: x1=..., х2=... и т.д.

Совет 2: Как решать уравнения

Решение уравнений - то, без чего нельзя обойтись в физике, математике, химии. Как минимум. Учимся основам их решения.
Инструкция
1
В самой общей и простой классификации уравнения можно разделить по количеству переменных, в них содержащихся, и по степеням, в которых эти переменные стоят.

Решить уравнение значит найти все его корни либо доказать, что их нет.

Любое уравнений имеет не более P корней, где P - максимальная степень данного уравнения.

Но часть этих корней может и совпадать. Так, например, уравнение х^2+2*x+1=0, где ^ - значок возведения в степень, сворачивается в квадрат выражения (х+1), то есть в произведение двух одинаковых скобок, каждая из которых даёт х=-1 в качестве решения.
2
Если в уравнении всего одна неизвестная, это значит, что вам удастся в явном виде найти его корни (действительные или комплексные).

Для этого скорей всего понадобятся, различные преобразования: формулы сокращённого умножения, формула вычисления дискриминанта и корней квадратного уравнения, перенос слагаемых из одной части в другую, приведение к общему знаменателю, умножение обоих частей уравнения на одно и тоже выражение, возведение в квадрат и прочее.

Преобразования, не влияющие на корни уравнения, называются тождественными. Они используются для упрощения процесса решения уравнения.

Также вы можете вместо традиционного аналитического воспользоваться графическим методом и записать данное уравнение в виде функции, проведя затем её исследование.
3
Если в уравнении неизвестных больше одной, то вам удастся лишь выразить одну из них через другую, показав тем самым набор решений. Таковы, например, уравнения с параметрами, в которых присутствует неизвестная x и параметр а. Решить параметрическое уравнение - значит для всех а выразить х через а, то есть рассмотреть все возможные случаи.

Если в уравнении стоят производные или дифференциалы неизвестных (смотри картинку), поздравляю, это дифференциальное уравнение, и тут вам не обойтись без высшей математики).
Как решать уравнения
Источники:
  • Тождественные преобразования

Совет 3: Как решать задачи с дробями

Чтобы решить задачу с дробями, нужно научиться делать с ними арифметические действия. Они могут быть десятичные, но чаще всего используются натуральные дроби с числителем и знаменателем. Только после этого можно переходить на решения математических задач с дробными величинами.
Вам понадобится
  • - калькулятор;
  • - знания свойств дробей;
  • - умение производить действия с дробями.
Инструкция
1
Дробью называют запись деления одного числа на другое. Зачастую это сделать нацело нельзя, поэтому и оставляют это действие «неоконченным . Число, которое является делимым (оно стоит над или перед знаком дроби), называются числителем, а второе число (под знаком дроби или после него) – знаменателем. Если числитель больше знаменателя, дробь называется неправильной, и из нее можно выделить целую часть. Если числитель меньше знаменателя, то такая дробь называется правильной, и ее целая часть равна 0.
2
Задачи с дробями делятся на несколько видов. Определите, к какому из них относится задача. Простейший вариант – нахождение доли числа, выраженной дробью. Для решения этой задачи достаточно умножить это число на дробь. Например, на склад завезли 8 т картошки. В первую неделю было продано 3/4 от ее общего количества. Сколько картошки осталось? Чтобы решить эту задачу, число 8 умножьте на 3/4. Получится 8∙3/4=6 т.
3
Если нужно найти число по его части, умножьте известную часть числа на дробь, обратную той, которая показывает какова доля данной части в числе. Например, 8 человек из класса составляют 1/3 от общего количества учеников. Сколько детей учится в классе? Поскольку 8 человек это часть, которая представляет 1/3 от всего количества, то найдите обратную дробь, которая равна 3/1 или просто 3. Затем для получения количества учеников в классе 8∙3=24 ученика.
4
Когда нужно найти какую часть числа составляет одно число от другого, поделите число, которое представляет часть на то, которое является целым. К примеру, если расстояние между городами 300 км, а автомобиль проехал 200 км, какую часть этот составит от всего пути? Поделите часть пути 200 на полный путь 300, после сокращения дроби получите результат. 200/300=2/3.
5
Чтобы найти часть неизвестную долю от числа, когда есть известная, возьмите целое число за условную единицу, и отнимите от нее известную долю. Например, если уже прошло 4/7 части урока, сколько еще осталось? Возьмите весь урок как условную единицу и отнимите от нее 4/7. Получите 1-4/7=7/7-4/7=3/7.
Источники:
  • решение задачи с дробями

Совет 4: Как решать задачи с неправильными дробями

Дроби – это математическая форма записи простого рационального числа. Она представляет собой число, которое состоит из одной или нескольких долей единицы, может быть как в десятичном, так и в обычном виде. Сегодня операции по преобразованию дробей имеют огромное значение не только в математике, но и в других областях знаний.
Инструкция
1
Как правило, большинство обыкновенных дробей бывают неправильными, и в таком случае они требуют определенных действий со стороны того, кто решает примеры и задачи с данной дробью.
2
Возьмите учебник со своей задачей. Внимательно ознакомьтесь с условием, прочитав его несколько раз, и перейдите к решению. Посмотрите, какие дроби имеются в решаемых вами действиях. Это могут быть неправильные, правильные или десятичные дроби. Переведите правильные дроби в неправильные, но при этом помните, что для записи ответа все действия придется выполнить обратно, преобразовав уже неправильную дробь в правильную. У неправильной дроби число над дробной чертой (числитель) всегда больше числа под чертой – знаменателя. Для того чтобы сделать перевод из правильной дроби в неправильную необходимо выполнить следующие шаги.
3
Умножьте знаменатель на целое число и прибавьте к полученному результату числитель. К примеру, если дробь вида 2 целых 7/9, необходимо 9 умножить на 2 и потом к 18 прибавить 7 - конечным результатом будет 25/9.
4
Произведите все необходимые действия по своей задаче (сложения, вычитания, деления, умножения), используя преобразованные дроби.Возьмите свой ответ, его необходимо будет представить в обыкновенной дроби. Для этого разделите числитель на знаменатель. К примеру, если необходимо перевести число 25/9 в правильную дробь, разделите 25 на 9. Так как 25 на 9 нацело не делится, в ответе получается 2 целых и семь (числитель) девятых (знаменатель). Теперь получена правильная дробь, где числитель больше знаменателя и имеется целая часть.
5
Запишите ответ задачи правильной дробью. Проведите проверку своим действиям, в случае если ее требует сделать условие задачи или преподаватель.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500