Совет 1: Как решать арифметические прогрессии

Арифметическая прогрессия - это такая последовательность, у которой каждый ее член, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом d (шагом или разностью арифметической прогрессии). Чаще всего в задачах с арифметическими прогрессиями ставятся такие вопросы, как нахождение первого члена арифметической прогрессии, n-го члена, нахождение разности арифметической прогрессии, суммы всех членов арифметической прогрессии. Рассмотрим каждый из этих вопросов более подробно.
Вам понадобится
  • Умение выполнять основные математические действия.
Инструкция
1
Из определения арифметической прогрессии следует следующая связь соседних членов арифметической прогрессии - An+1=An+d, например, A5=6, а d=2, то A6=A5+d=6+2=8.
2
Если известен первый член (A1) и разность (d) арифметической прогрессии, то можно найти любой ее член, использую формулу n-го члена арифметической прогрессии (An): An=A1+d(n-1). Например, пусть A1=2, d=5. Найдем, A5 и A10. A5=A1+d(5-1)=2+5(5-1)=2+5*4=2+20=22, а A10=A1+d(10-1)=2+5(10-1)=2+5*9=2+45=47.
3
Используя предыдущую формулу можно найти первый член арифметической прогрессии. A1 тогда будет находиться по формуле A1=An-d(n-1), то есть если предположить, что A6=27, а d=3, A1=27-3(6-1)=27-3*5=27-15=12.
4
Чтобы найти разность (шаг) арифметической прогрессии, необходимо знать первый и n-ый член арифметической прогрессии, зная их, разность арифметической прогрессии находится по формуле d=(An-A1)/(n-1). Например, A7=46, A1=4, тогда d=(46-4)/(7-1)=42/6=7. Если d>0, то прогрессия называется возрастающей, если d<0 - убывающей.
5
Сумму первых n членов арифметической прогрессии можно найти по следующей формуле. Sn=(A1+An)n/2, где Sn - сумма n членов арифметической прогрессии, A1, An - 1-ый и n-ый член арифметической прогрессии соответственно. Воспользуемся данными из предыдущего примера, тогда Sn=(4+46)7/2=50*7/2=350/2=175.
6
Если же n-ый член арифметической прогрессии неизвестен, но зато известен шаг арифметической прогрессии и номер n-го члена, то, чтобы найти сумму арифметической прогрессии, можно воспользоваться формулой Sn=(2A1+(n-1)dn)/2. Например, A1=5, n=15, d=3, тогда Sn=(2*5+(15-1)*3*15)/2=(10+14*45)/2=(10+630)/2=640/2=320.

Совет 2: Как найти разность прогрессии

Арифметической последовательностью называют такой упорядоченный набор чисел, каждый член которого, кроме первого, отличается от предыдущего на одну и ту же величину. Эта постоянная величина называется разностью прогрессии или ее шагом и может быть рассчитана по известным членам арифметической прогрессии.
Инструкция
1
Если из условий задачи известны значения первого и второго или любой другой пары соседних членов арифметической прогрессии, для вычисления разности (d) просто отнимите от последующего члена предыдущий. Получившаяся величина может быть как положительным, так и отрицательным числом - это зависит от того, является ли прогрессия возрастающей или убывающей. В общей форме решение для произвольно взятой пары (aᵢ и aᵢ₊₁) соседних членов прогрессии запишите так: d = aᵢ₊₁ - aᵢ.
2
Для пары членов такой прогрессии, один из которых является первым (a₁), а другой - любым другим произвольно выбранным, тоже можно составить формулу нахождения разности (d). Однако в этом случае обязательно должен быть известен порядковый номер (i) произвольного выбранного члена последовательности. Для вычисления разности сложите оба числа, а полученный результат разделите на уменьшенный на единицу порядковый номер произвольного члена. В общем виде эту формулу запишите так: d = (a₁+ aᵢ)/(i-1).
3
Если кроме произвольного члена арифметической прогрессии с порядковым номером i известен другой ее член с порядковым номером u, измените формулу из предыдущего шага соответствующим образом. В этом случае разностью (d) прогрессии будет сумма этих двух членов, поделенная на разность их порядковых номеров: d = (aᵢ+aᵥ)/(i-v).
4
Формула вычисления разности (d) несколько усложнится, если в условиях задачи дано значение первого ее члена (a₁) и сумма (Sᵢ) заданного числа (i) первых членов арифметической последовательности. Для получения искомого значения разделите сумму на количество составивших ее членов, отнимите значение первого числа в последовательности, а результат удвойте. Получившуюся величину разделите на уменьшенное на единицу число членов, составивших сумму. В общем виде формулу вычисления дискриминанта запишите так: d = 2*(Sᵢ/i-a₁)/(i-1).
Видео по теме
Обратите внимание
Любой член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и следующего члена прогрессии: An=(An-1+An+1)/2.
Источники:
  • как решать задачи арифметической прогрессии
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше