Совет 1: Как решать систему уравнений с двумя неизвестными

Уравнение – это тождество, где среди известных членов скрывается одно число, которое необходимо поставить вместо латинской буквы, для того чтобы с левой и правой стороны получилось одинаковое числовое выражение. Чтобы его найти, нужно перенести в одну сторону все известные члены, в другую - все неизвестные члены уравнения. А как решать систему из двух таких уравнений? По отдельности – нельзя, следует связать искомые величины из системы друг с другом. Сделать это можно тремя способами: методом подстановки, методом сложения и методом построения графиков.
Инструкция
1
Способ сложения.
Нужно записать два уравнения строго друг под другом:

2 –5у=61

-9х+5у=-40.

Далее, сложить каждое слагаемое уравнений соответственно, учитывая их знаки:

2х+(-9х)=-7х, -5у+5у=0, 61+(-40)=21. Как правило, одна из сумм, содержащая неизвестную величину, будет равна нулю.
Составить уравнение из полученных членов:

-7х+0=21.
Найти неизвестное: -7х=21, ч=21:(-7)=-3.
Подставить уже найденное значение в любое из исходных уравнений и получить второе неизвестное, решив линейное уравнение:

2х–5у=61, 2(-3)–5у=61, -6-5у=61, -5у=61+6, -5у=67, у=-13,4.
Ответ системы уравнений: х=-3, у=-13,4.
2
Способ подстановки.
Из одного уравнения следует выразить любое из искомых членов:

х–5у=61

-9х+4у=-7.

х=61+5у, х=61+5у.
Подставить получившееся уравнение во второе вместо числа «икс» (в данном случае):

-9(61+5у)+4у=-7.
Далее решив

линейное уравнение, найти число «игрек»:

-549+45у+4у=-7, 45у+4у=549-7, 49у=542, у=542:49, у≈11.
В произвольно выбранное (из системы) уравнение вставить вместо уже найденного «игрека» число 11 и вычислить второе неизвестное:

Х=61+5*11, х=61+55, х=116.
Ответ данной системы уравнений: х=116, у=11.
3
Графический способ.
Заключается в практическом нахождении координаты точки, в которой пересекаются прямые, математически записанные в системе уравнений. Следует начертить графики обоих прямых по отдельности в одной системе координат. Общий вид уравнения прямой: – у=kх+b. Чтобы построить прямую, достаточно найти координаты двух точек, причем, х выбирается произвольно.
Пусть дана система: 2х – у=4

у=-3х+1.
Строится прямая по первому уравнению, для удобства его нужно записать: у=2х-4. Придумать (полегче) значения для икс, подставляя его в уравнение, решив его, найти игрек. Получаются две точки, по которым строится прямая. (см рис.)
х 0 1

у -4 -2
Строится прямая по второму уравнению: у=-3х+1.
Так же построить прямую. (см рис.)

х 0 2

у 1 -5
Найти координаты точки пересечения двух построенных прямых на графике (если прямые не пересекаются, то система уравнений не имеет решения – так бывает).

Совет 2: Как решать систему уравнений по графикам

Система уравнений представляет собой совокупность математических записей, каждая из которых содержит некоторое количество переменных. Существует несколько способов их решения.
Вам понадобится
  • -линейка и карандаш;
  • -калькулятор.
Инструкция
1
Решить систему уравнений - означает найти множество всех ее решений, или доказать, что она их не имеет. Её принято записывать с помощью фигурной скобки.
2
Для решения системы уравнений с двумя переменными обычно используют следующие методы: графический способ, способ подстановки и способ сложения. Остановимся подробнее на первом из вышеперечисленных вариантов.
3
Рассмотрим последовательность решения системы, которая состоит из линейных уравнений имеющих вид: a1x + b1y = c1 и a2x + b2y = c2. Где x и y – неизвестные переменные, а b,c – свободные члены. При применении данного способа каждое решение системы представляет собой координаты точек прямых, соответствующих каждому уравнению. Для начала в каждом случае выразите одну переменную через другую. Затем задайте переменной х несколько любых значений. Достаточно два. Подставьте в уравнение и найдите y. Постройте систему координат, отметьте на ней полученные точки и проведите через них прямую. Аналогичные расчеты необходимо провести и для других частей системы.
4
Точка или точки пересечения построенных графиков и будут являться решением данной совокупности уравнений.
5
Система имеет единственное решение, если построенные прямые пересекаются и имеют одну общую точку. Она несовместна, если графики параллельны друг другу. И имеет бесконечно много решений, когда прямые сливаются друг с другом.
6
Данный способ считается очень наглядным. Главным недостатком является то, что вычисленные неизвестные имеют приближенные значения. Более точный результат дают так называемые алгебраические методы.
7
Любое решение системы уравнений стоит проверить. Для этого подставьте вместо переменных полученные значения. Так же можно найти его решение несколькими методами. Если решение системы верное, то все ответы должны получиться одинаковыми.

Совет 3: Как найти неизвестное слагаемое

Часто встречаются уравнения, в которых одно из слагаемых неизвестно. Чтобы решить такое уравнение, нужно запомнить и проделать с данными числами определенный набор действий.
Вам понадобится
  • - лист бумаги;
  • - ручка или карандаш.
Инструкция
1
Представьте, что перед вами 8 кроликов, а у вас есть только 5 морковок. Подумайте, сколько морковок вам нужно еще купить, чтобы каждому кролику досталось по морковке.
2
Представим эту задачу в виде уравнения: 5 + x = 8. Подставим на место x число 3. Действительно, 5 + 3 = 8.
3
При сложении числа, которые мы складываем, называются слагаемыми, а полученное в результате сложения число – суммой. Сумма должна быть больше известного слагаемого или равна ему.
4
Когда вы подставляли число на место x, вы проделывали ту же операцию, что и при вычитании 5 из 8. Таким образом, чтобы найти неизвестное слагаемое, вычтите из суммы известное слагаемое.
5
Допустим, у вас 20 кроликов и только 5 морковок. Составим уравнение. Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, значения которых требуется отыскать, называются неизвестными. Составьте уравнение с одним неизвестным, назовите его x. При решении нашей задачи про кроликов получается следующее уравнение: 5 + x = 20.
6
Найдем разницу между 20 и 5. При вычитании то число, из которого вычитают, называется уменьшаемое. То число, которое вычитают, называется вычитаемое, а конечный результат называется разностью. Итак, x = 20 – 5; x = 15. Нужно купить 15 морковок для кроликов.
7
Сделайте проверку: 5 + 15 = 20. Уравнение решено верно. Разумеется, когда речь идет о таких простых числах, проверку выполнять необязательно. Однако когда приходится решать уравнения с трехзначными, четырехзначными и тому подобными числами, обязательно нужно выполнять проверку, чтобы быть абсолютно уверенным в результате своей работы.
Видео по теме
Полезный совет
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

Совет 4: Как решить систему из трёх уравнений с тремя неизвестными

Система из трех уравнений с тремя неизвестными может и не иметь решений, несмотря на достаточное количество уравнений. Можно пытаться решить ее с помощью метода подстановки или с помощью метода Крамера. Метод Крамера помимо решения системы позволяет оценить, является ли система разрешимой, до того, как отыскать значения неизвестных.
Инструкция
1
Метод подстановки заключается в последовательном выражении одной неизвестной через две других и подстановке полученного результата в уравнения системы. Пусть дана система из трех уравнений в общем виде:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

Выразите из первого уравнения x: x = (d1 - b1y - c1z)/a1 - и подставьте во второе и третье уравнения, затем из второго уравнения выразите y и подставьте в третье. Вы получите линейное выражение для z через коэффициенты уравнений системы. Теперь идите "обратно": подставьте z во второе уравнение и найдите y, а затем z и y подставьте в первое и найдите x. Процесс в общем виде отображен на рисунке до нахождения z. Дальше запись в общем виде будет слишком громоздкой, на практике, подставив числа, вы довольно легко найдете все три неизвестные.
2
Метод Крамера заключается в составлении матрицы системы и вычислении определителя этой матрицы, а также еще трех вспомогательных матриц. Матрица системы составляется из коэффициентов при неизвестных членах уравнений. Столбец, содержащий числа, стоящие в правых частях уравнений, называется столбцом правых частей. В матрице системы он не используется, но используется при решении системы.
3
Пусть, как и раньше, дана система из трех уравнений в общем виде:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

Тогда матрицей этой системы уравнений будет следующая матрица:

| a1 b1 c1 |

| a2 b2 c2 |

| a3 b3 c3 |

Прежде всего найдите определитель матрицы системы. Формула нахождения определителя: |A| = a1b2c3 + a3b1c2 + a2b3c1 - a3b2c1 - a2b1c3 - a1b3с2. Если он не равен нулю, то система разрешима и имеет единственное решение. Теперь нужно найти определители еще трех матриц, которые получаются из матрицы системы путем подставления столбца правых частей вместо первого столбца (эту матрицу обозначим Ax), вместо второго (Ay) и третьего (Az). Вычислите их определители. Тогда x = |Ax|/|A|, y = |Ay|/|A|, z = |Az|/|A|.
Источники:
  • Системы трёх линейных уравнений с тремя неизвестными

Совет 5: Как составить систему уравнений

Уравнением называют аналитическую запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Система – это совокупность уравнений, для которых требуется найти значения неизвестных, удовлетворяющих одновременно всем этим уравнениям. Так как успешное решение задачи невозможно без правильно составленной системы уравнений, необходимо знать основные принципы составления подобных систем.
Инструкция
1
Во-первых, определите неизвестные величины, которые требуется найти в данной задаче. Обозначьте их через переменные. Наиболее распространенные переменные, используемые при решении систем уравнений, это x, y и z. В отдельных задачах удобнее применять общепринятые обозначения, например, V для обозначения объема, или a для обозначения ускорения.
2
Пример. Пусть гипотенуза прямоугольного треугольника равна 5 м. Необходимо определить катеты, если известно, что после того, как один из них увеличить в 3 раза, а другой в 4, то сумма их длин составит 29 м. Для данной задачи необходимо обозначить длины катетов через переменные x и y.
3
Далее внимательно читайте условие задачи и связывайте неизвестные величины уравнениями. Иногда взаимосвязь между переменными будет очевидна. Например, в приведенном выше примере, катеты связывает следующее соотношение.Если «один из них увеличить в 3 раза» (3 * x), «а другой в 4» (4 * y), «то сумма их длин составит 29 м»: 3 * x + 4 * y = 29.
4
Другое уравнение для данной задачи менее очевидно. Оно кроется в условии задаче о том, что дан прямоугольный треугольник. Значит, можно применить теорему Пифагора. Т.е. x^2 + y^2 = 25. Итого получается два уравнения:
3 * x + 4 * y = 29 и x^2 + y^2 = 25.Для того чтобы система имела однозначное решение, количество уравнений должно быть равно количеству неизвестных. В приведенном примере имеется две переменных и два уравнения. Значит, система имеет одно конкретное решение: x = 3 м, y = 4 м.
5
При решении физических задач «неочевидные» уравнения могут заключаться в формулах, связывающих физические величины. Например, пусть в условии задачи необходимо найти скорости пешеходов Va и Vb. Известно, что пешеход A проходит расстояние S на 3 часа медленнее, чем пешеход B. Тогда можно составить уравнение, воспользовавшись формулой S = V * t, где S – это расстояние, V – скорость, t – время: S / Va = S / Vb + 3. Здесь S / Va - это время, за которое пройдет заданное расстояние пешеход A. S / Vb - время, за которое пройдет заданное расстояние пешеход B. По условию это время на 3 часа меньше.
Видео по теме
Обратите внимание
Все уравнения в системе должны поставлять дополнительную независимую от других уравнений информацию. Иначе система будет недоопределена и однозначного решения найти будет не возможно.
Полезный совет
После решения системы уравнений подставьте найденные значения в исходную систему и проверьте, что они удовлетворяют всем уравнениям.

Совет 6: Как решить уравнение с тремя неизвестными

Само по себе уравнение с тремя неизвестными имеет множество решений, поэтому чаще всего оно дополняется еще двумя уравнениями или условиями. В зависимости от того, каковы исходные данные, во многом будет зависеть ход решения.
Вам понадобится
  • - система из трех уравнений с тремя неизвестными.
Инструкция
1
Если два из трех уравнений системы имеют лишь две неизвестные из трех, попытайтесь выразить одни переменные через другие и подставить их в уравнение с тремя неизвестными. Ваша цель при этом – превратить его в обычное уравнение с одной неизвестной. Если это удалось, дальнейшее решение довольно просто – подставьте найденное значение в другие уравнения и найдите все остальные неизвестные.
2
Некоторые системы уравнений можно решить вычитанием из одного уравнения другого. Посмотрите, нет ли возможности умножить одно из выражений на число или переменную так, чтобы при вычитании сократились сразу две неизвестные. Если такая возможность есть, воспользуйтесь ею, скорее всего, последующее решение не составит труда. Не забывайте, что при умножении на число необходимо умножать как левую часть, так и правую. Точно также, при вычитании уравнений необходимо помнить о том, что правая часть должна также вычитаться.
3
Если предыдущие способы не помогли, воспользуйтесь общим способом решений любых уравнений с тремя неизвестными. Для этого перепишите уравнения в виде а11х1+a12х2+а13х3=b1, а21х1+а22х2+а23х3=b2, а31х1+а32х2+а33х3=b3. Теперь составьте матрицу коэффициентов при х (А), матрицу неизвестных (Х) и матрицу свободных членов (В). Обратите внимание, умножая матрицу коэффициентов на матрицу неизвестных, вы получите матрицу, равную матрице свободных членов, то есть А*Х=В.
4
Найдите матрицу А в степени (-1) предварительно отыскав определитель матрицы, обратите внимание, он не должен быть равен нулю. После этого умножьте полученную матрицу на матрицу В, в результате вы получите искомую матрицу Х, с указанием всех значений.
5
Найти решение системы из трех уравнений можно также с помощью метода Крамера. Для этого найдите определитель третьего порядка ∆, соответствующий матрице системы. Затем последовательно найдите еще три определителя ∆1, ∆2 и ∆3, подставляя вместо значений соответствующих столбцов значения свободных членов. Теперь найдите х: х1=∆1/∆, х2=∆2/∆, х3=∆3/∆.
Источники:
  • решений уравнений с тремя неизвестными

Совет 7: Как решать систему уравнений

Приступая к решению системы уравнений, разберитесь с тем, какие это уравнения. Достаточно хорошо изучены способы решения линейных уравнений. Нелинейные уравнения чаще всего не решаются. Имеются лишь одни частные случаи, каждый из которых практически индивидуален. Поэтому изучение приемов решения следует начать с уравнений именно линейных. Такие уравнения можно решать даже чисто алгоритмически.
Инструкция
1
Начните процесс обучения с изучения способов решения системы двух линейных уравнений с двумя неизвестными X и Y методом исключения. a11*X+a12*Y=b1 (1); a21*X+a22*Y=b2 (2). Коэффициенты уравнений обозначены индексами, указывающими их месторасположения. Так коэффициент a21 подчеркивает тот факт, что он записан во втором уравнении на первом месте. В общепринятых обозначениях система записывается уравнениями расположенными друг под другом совместно обозначаемых фигурной скобкой справа или слева (подробнее см. рис. 1а).
Как решать систему уравнений
2
Нумерация уравнений произвольна. Выберите из них самое простое, например то, в котором перед одной из переменных стоит коэффициент 1 или по крайней мере целое число. Если это уравнение (1), то далее выразите, скажем, неизвестное Y через X (случай исключения Y). Для этого преобразуйте (1) к виду a12*Y=b1-a11*X (или a11*X=b1-a12*Y при исключении Х)), а затем Y=(b1-a11*X)/a12. Подставив последнее в уравнение (2) запишите a21*X+a22*(b1-a11*X)/a12=b2. Решите это уравнение относительно X.
a21*X+a22*b1/a12-a11*a22*X/a12=b2; (a21-a11*a22/a12)*X=b2-a22*b1/a12;
X=(a12* b2-a22*b1)/(a12*a21-a11*a22) или X=(a22* b1-a12*b2)/(a11*a22-a12*a21).
Воспользовавшись найденной связью между Y и Х, окончательно получите и второе неизвестное Y=(a11* b2-a21*b1)/(a11*a22-a12*a21).
3
Если бы система была задана с конкретными числовыми коэффициентами, то и выкладки были бы менее громоздки. Зато общее решение дает возможность рассмотреть тот факт, что знаменатели при найденных неизвестных совершено одинаковы. Да и у числителей просматриваются некоторые закономерности их построения. Если размерность системы уравнений была бы большей двух, то метод исключения приводил бы к весьма громоздким выкладкам. Чтобы их избежать, разработаны чисто алгоритмические способы решения. Самый простой из них алгоритм Крамера (формулы Крамера). Для их изучения следует узнать, что такое общая система уравнений из n уравнений.
4
Система n линейных алгебраических уравнений с n неизвестными имеет вид (см. рис. 1a). В ней аij – коэффициенты системы,
хj – неизвестные, bi – свободные члены (i=1, 2, ... , n; j=1, 2, ... , п). Компактно такую систему можно записывать в матричной форме АХ=B. Здесь А – матрица коэффициентов системы, Х – матрица-столбец неизвестных, B – матрица-столбец свободных членов (см. рис 1b). По методу Крамера каждое неизвестное xi =∆i/∆ (i=1,2…,n). Определитель ∆ матрицы коэффициентов называют главным, а ∆i вспомогательным. Для каждой неизвестной вспомогательный определитель находят с помощью замены i-го столбца главного определителя на столбец свободных членов. Подробно метод Крамера для случая систем второго и третьего порядка представлен на рис. 2.
Как решать систему уравнений
Видео по теме

Совет 8: Как решать системы способом сложения

Решение систем уравнений - достаточно сложный раздел школьной программы. Однако в действительности существует несколько простых алгоритмов, которые позволяют делать это довольно быстро. Один из них - решение систем способом сложения.
Система линейных уравнений представляет собой объединение двух или более равенств, в каждом из которых имеется по два или более неизвестных. Существуют два основных способа решения систем линейных уравнений, которые используются в рамках школьной программы. Один из них носит название метода подстановки, другой - метода сложения.

Стандартный вид системы из двух уравнений


При стандартном виде первое уравнение имеет вид a1*x+b1*y=с1, второе уравнение имеет вид a2*x+b2*y=c2 и так далее. Например, в случае с двумя частями системы в обоих приведенных уравнениях a1, a2, b1, b2, c1, c2 - некоторые числовые коэффициенты, представленные в конкретных уравнениях. В свою очередь, x и у представляют собой неизвестные, значения которых нужно определить. Искомые значения обращают оба уравнения одновременно в верные равенства.

Решение системы способом сложения


Для того чтобы решить систему способом сложения, то есть найти те значения x и y, которые превратят их в верные равенства, необходимо предпринять несколько несложных шагов. Первый из них заключается в преобразовании любого из уравнений таким образом, чтобы числовые коэффициенты для переменной x или y в обоих уравнениях совпадали по модулю, но различались по знаку.

Например, пусть задана система, состоящая из двух уравнений. Первое из них имеет вид 2x+4y=8, второе имеет вид 6x+2y=6. Одним из вариантов выполнения поставленной задачи является домножение второго уравнения на коэффициент -2, которое приведет его к виду -12x-4y=-12. Верный выбор коэффициента является одной из ключевых задач в процессе решения системы способом сложения, поскольку он определяет весь дальнейший ход процедуры нахождения неизвестных.

Теперь необходимо осуществить сложение двух уравнений системы. Очевидно, взаимное уничтожение переменных с равными по значению, но противоположными по знаку коэффициентами приведет его к виду -10x=-4. После этого необходимо решить это простое уравнение, из которого однозначно следует, что x=0,4.

Последним шагом в процессе решения является подстановка найденного значения одной из переменных в любое из первоначальных равенств, имеющихся в системе. Например, подставляя x=0,4 в первое уравнение, можно получить выражение 2*0,4+4y=8, откуда y=1,8. Таким образом, x=0,4 и y=1,8 являются корнями приведенной в примере системы.

Для того чтобы убедиться, что корни были найдены верно, полезно произвести проверку, подставив найденные значения во второе уравнение системы. Например, в данном случае получается равенство вида 0,4*6+1,8*2=6, которое является верным.
Видео по теме
Видео по теме
Полезный совет
Если одну и ту же систему уравнений решить тремя разными способами, ответ получится одинаковый (если решение верно).
Источники:
  • Алгебра 8 класса
  • решить уравнение с двумя неизвестными онлайн
Поиск
Совет полезен?
Комментарии 1
Пожаловаться
написал
Решение неправильное или я не пойму:

"Способ подстановки.
-9(61+5у)+4у=-7.
Далее решив
-549+45у+4у=-7"


Почему не -549-45у+4у=-7 ???????
Добавить комментарий к статье
Осталось символов: 500