Совет 1: Как решать систему уравнений с двумя неизвестными

Уравнение – это тождество, где среди известных членов скрывается одно число, которое необходимо поставить вместо латинской буквы, для того чтобы с левой и правой стороны получилось одинаковое числовое выражение. Чтобы его найти, нужно перенести в одну сторону все известные члены, в другую - все неизвестные члены уравнения. А как решать систему из двух таких уравнений? По отдельности – нельзя, следует связать искомые величины из системы друг с другом. Сделать это можно тремя способами: методом подстановки, методом сложения и методом построения графиков.
Как решать систему уравнений с двумя неизвестными
Инструкция
1
Способ сложения.
Нужно записать два уравнения строго друг под другом:

2 –5у=61

-9х+5у=-40.

Далее, сложить каждое слагаемое уравнений соответственно, учитывая их знаки:

2х+(-9х)=-7х, -5у+5у=0, 61+(-40)=21. Как правило, одна из сумм, содержащая неизвестную величину, будет равна нулю.
Составить уравнение из полученных членов:

-7х+0=21.
Найти неизвестное: -7х=21, ч=21:(-7)=-3.
Подставить уже найденное значение в любое из исходных уравнений и получить второе неизвестное, решив линейное уравнение:

2х–5у=61, 2(-3)–5у=61, -6-5у=61, -5у=61+6, -5у=67, у=-13,4.
Ответ системы уравнений: х=-3, у=-13,4.
2
Способ подстановки.
Из одного уравнения следует выразить любое из искомых членов:

х–5у=61

-9х+4у=-7.

х=61+5у, х=61+5у.
Подставить получившееся уравнение во второе вместо числа «икс» (в данном случае):

-9(61+5у)+4у=-7.
Далее решив

линейное уравнение, найти число «игрек»:

-549+45у+4у=-7, 45у+4у=549-7, 49у=542, у=542:49, у≈11.
В произвольно выбранное (из системы) уравнение вставить вместо уже найденного «игрека» число 11 и вычислить второе неизвестное:

Х=61+5*11, х=61+55, х=116.
Ответ данной системы уравнений: х=116, у=11.
3
Графический способ.
Заключается в практическом нахождении координаты точки, в которой пересекаются прямые, математически записанные в системе уравнений. Следует начертить графики обоих прямых по отдельности в одной системе координат. Общий вид уравнения прямой: – у=kх+b. Чтобы построить прямую, достаточно найти координаты двух точек, причем, х выбирается произвольно.
Пусть дана система: 2х – у=4

у=-3х+1.
Строится прямая по первому уравнению, для удобства его нужно записать: у=2х-4. Придумать (полегче) значения для икс, подставляя его в уравнение, решив его, найти игрек. Получаются две точки, по которым строится прямая. (см рис.)
х 0 1

у -4 -2
Строится прямая по второму уравнению: у=-3х+1.
Так же построить прямую. (см рис.)

х 0 2

у 1 -5
Найти координаты точки пересечения двух построенных прямых на графике (если прямые не пересекаются, то система уравнений не имеет решения – так бывает).
Видео по теме
Полезный совет
Если одну и ту же систему уравнений решить тремя разными способами, ответ получится одинаковый (если решение верно).
Источники:
  • Алгебра 8 класса
  • решить уравнение с двумя неизвестными онлайн
  • Примеры решения систем линейных уравнений с двумя

Совет 2: Как найти неизвестное слагаемое

Часто встречаются уравнения, в которых одно из слагаемых неизвестно. Чтобы решить такое уравнение, нужно запомнить и проделать с данными числами определенный набор действий.
Как найти неизвестное слагаемое
Вам понадобится
  • - лист бумаги;
  • - ручка или карандаш.
Инструкция
1
Представьте, что перед вами 8 кроликов, а у вас есть только 5 морковок. Подумайте, сколько морковок вам нужно еще купить, чтобы каждому кролику досталось по морковке.
2
Представим эту задачу в виде уравнения: 5 + x = 8. Подставим на место x число 3. Действительно, 5 + 3 = 8.
3
При сложении числа, которые мы складываем, называются слагаемыми, а полученное в результате сложения число – суммой. Сумма должна быть больше известного слагаемого или равна ему.
4
Когда вы подставляли число на место x, вы проделывали ту же операцию, что и при вычитании 5 из 8. Таким образом, чтобы найти неизвестное слагаемое, вычтите из суммы известное слагаемое.
5
Допустим, у вас 20 кроликов и только 5 морковок. Составим уравнение. Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, значения которых требуется отыскать, называются неизвестными. Составьте уравнение с одним неизвестным, назовите его x. При решении нашей задачи про кроликов получается следующее уравнение: 5 + x = 20.
6
Найдем разницу между 20 и 5. При вычитании то число, из которого вычитают, называется уменьшаемое. То число, которое вычитают, называется вычитаемое, а конечный результат называется разностью. Итак, x = 20 – 5; x = 15. Нужно купить 15 морковок для кроликов.
7
Сделайте проверку: 5 + 15 = 20. Уравнение решено верно. Разумеется, когда речь идет о таких простых числах, проверку выполнять необязательно. Однако когда приходится решать уравнения с трехзначными, четырехзначными и тому подобными числами, обязательно нужно выполнять проверку, чтобы быть абсолютно уверенным в результате своей работы.
Видео по теме
Полезный совет
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

Совет 3: Как решать систему уравнений

Приступая к решению системы уравнений, разберитесь с тем, какие это уравнения. Достаточно хорошо изучены способы решения линейных уравнений. Нелинейные уравнения чаще всего не решаются. Имеются лишь одни частные случаи, каждый из которых практически индивидуален. Поэтому изучение приемов решения следует начать с уравнений именно линейных. Такие уравнения можно решать даже чисто алгоритмически.
Как решать систему уравнений
Инструкция
1
Начните процесс обучения с изучения способов решения системы двух линейных уравнений с двумя неизвестными X и Y методом исключения. a11*X+a12*Y=b1 (1); a21*X+a22*Y=b2 (2). Коэффициенты уравнений обозначены индексами, указывающими их месторасположения. Так коэффициент a21 подчеркивает тот факт, что он записан во втором уравнении на первом месте. В общепринятых обозначениях система записывается уравнениями расположенными друг под другом совместно обозначаемых фигурной скобкой справа или слева (подробнее см. рис. 1а).
Как решать систему уравнений
2
Нумерация уравнений произвольна. Выберите из них самое простое, например то, в котором перед одной из переменных стоит коэффициент 1 или по крайней мере целое число. Если это уравнение (1), то далее выразите, скажем, неизвестное Y через X (случай исключения Y). Для этого преобразуйте (1) к виду a12*Y=b1-a11*X (или a11*X=b1-a12*Y при исключении Х)), а затем Y=(b1-a11*X)/a12. Подставив последнее в уравнение (2) запишите a21*X+a22*(b1-a11*X)/a12=b2. Решите это уравнение относительно X.
a21*X+a22*b1/a12-a11*a22*X/a12=b2; (a21-a11*a22/a12)*X=b2-a22*b1/a12;
X=(a12* b2-a22*b1)/(a12*a21-a11*a22) или X=(a22* b1-a12*b2)/(a11*a22-a12*a21).
Воспользовавшись найденной связью между Y и Х, окончательно получите и второе неизвестное Y=(a11* b2-a21*b1)/(a11*a22-a12*a21).
3
Если бы система была задана с конкретными числовыми коэффициентами, то и выкладки были бы менее громоздки. Зато общее решение дает возможность рассмотреть тот факт, что знаменатели при найденных неизвестных совершено одинаковы. Да и у числителей просматриваются некоторые закономерности их построения. Если размерность системы уравнений была бы большей двух, то метод исключения приводил бы к весьма громоздким выкладкам. Чтобы их избежать, разработаны чисто алгоритмические способы решения. Самый простой из них алгоритм Крамера (формулы Крамера). Для их изучения следует узнать, что такое общая система уравнений из n уравнений.
4
Система n линейных алгебраических уравнений с n неизвестными имеет вид (см. рис. 1a). В ней аij – коэффициенты системы,
хj – неизвестные, bi – свободные члены (i=1, 2, ... , n; j=1, 2, ... , п). Компактно такую систему можно записывать в матричной форме АХ=B. Здесь А – матрица коэффициентов системы, Х – матрица-столбец неизвестных, B – матрица-столбец свободных членов (см. рис 1b). По методу Крамера каждое неизвестное xi =∆i/∆ (i=1,2…,n). Определитель ∆ матрицы коэффициентов называют главным, а ∆i вспомогательным. Для каждой неизвестной вспомогательный определитель находят с помощью замены i-го столбца главного определителя на столбец свободных членов. Подробно метод Крамера для случая систем второго и третьего порядка представлен на рис. 2.
Как решать систему уравнений
Видео по теме
Совет полезен?
Поиск
Комментарии 1
написал
Решение неправильное или я не пойму:

"Способ подстановки.
-9(61+5у)+4у=-7.
Далее решив
-549+45у+4у=-7"


Почему не -549-45у+4у=-7 ???????
Добавить комментарий к статье
Осталось символов: 500