Совет 1: Как найти периметр четырёхугольника

Четырехугольник представляет собой геометрическую фигуру, обладающую четырьмя сторонами и таким же количеством углов. Независимо от типов четырехугольников, для подсчета их периметра существует единый подход. Но у него есть свои разновидности, которые вытекают из типа четырехугольника.
Четырехугольник ABCD
Вам понадобится
  • Знать все стороны четырехугольника.
Инструкция
1
Для того, чтобы рассчитать периметр четырехугольника ABCD со сторонами AB, BC, CD и DA, нужно сложить вместе каждую из его его сторон:

P = AB+BC+CD+DA, где

P - периметр четырехугольника.
2
Если дан квадрат со стороной a (у квадрата все стороны равны), то его периметр будет вычислен таким образом:

P = 4*a.
Как найти периметр четырёхугольника
3
Если дан прямоугольник или параллелограмм (у них обоих противолежащие стороны равны), то его площадь будет рассчитываться так:

P = 2*(a+b), где a и b - стороны прямоугольника/параллелограмма.
Как найти периметр четырёхугольника
Источники:
  • как найти периметр abcd

Совет 2: Как найти геометрическую фигуру

Среди основных задач аналитической геометрии на первом месте стоит представление геометрических фигур неравенством, уравнением или системой тех или других. Это возможно благодаря применению координат. Опытный математик, только взглянув на уравнение, без труда скажет, какую геометрическую фигуру можно начертить.
Как найти геометрическую фигуру
Инструкция
1
Уравнением F (x, y) можно задать кривую или прямую линию при выполнении двух условий: если координаты точки, которая не принадлежит заданной линии, не удовлетворяют уравнению; если каждая точка искомой линии со своими координатами удовлетворяет этому уравнению.
2
Уравнение вида x+√(y(2r-y) )=r arccos (r-y)/r задает в декартовых координатах циклоиду – траекторию, которая описывается точкой на окружности c радиусом r. При этом окружность не скользит по оси абсцисс, а катится. Какая при этом получается фигура, смотрите на рисунке 1.
Как найти геометрическую фигуру
3
Фигура, координаты точек которой задаются следующими уравнениями:
x=(R+r) cosφ - rcos (R+r)/r φ
y=(R+r) sinφ - rsin (R-r)/r φ,
называется эпициклоидой. Она показывает траекторию, которую описывает точка на окружности с радиусом r. Эта окружность катится по другой окружности, имеющей радиус R, с внешней стороны. То, как выглядит эпициклоида, смотрите на рисунке 2.
Как найти геометрическую фигуру
4
Если окружность, имеющая радиус r, скользит по другой окружности с радиусом R с внутренней стороны, то траектория, описываемая точкой на движущейся фигуре, называется гипоциклоидой. Координаты точек полученной фигуры можно найти через следующие уравнения:

x=(R-r)cosφ+rcos (R-r)/r φ
y=(R-r)sinφ-rsin (R-r)/r φ

На рисунке 3 изображен график гипоциклоиды.
Как найти геометрическую фигуру
5
Если вы видите параметрическое уравнение типа

x=x ̥+Rcosφ
y=y ̥+Rsinφ

или каноническое уравнение в декартовой системе координат

x2 + y2 = R2,

то при построении графика вы получите окружность. Смотрите рисунок 4.
Как найти геометрическую фигуру
6
Уравнение вида

x²/a² + y²/b² =1

описывает геометрическую фигуру под названием эллипс. На рисунке 5 вы увидите график эллипса.
Как найти геометрическую фигуру
7
Уравнением квадрата будет следующее выражение:

|x|+|y| = 1

Обратите внимание, что в данном случае квадрат расположен по диагонали. То есть оси абсцисс и ординат, ограниченные вершинами квадрата, являются диагоналями этой геометрической фигуры. График, на котором изображено решение данного уравнения, смотрите на рисунке 6.
Как найти геометрическую фигуру
Видео по теме

Совет 3: Как доказать что ABCD параллелограмм

Геометрия полностью построена на теоремах и доказательствах. Чтобы доказать, что произвольная фигура ABCD является параллелограммом, нужно знать определение и признаки этой фигуры.
Как доказать что ABCD параллелограмм
Инструкция
1
Параллелограммом в геометрии называется фигура с четырьмя углами, у которой параллельны противоположные стороны. Таким образом, ромб, квадрат и прямоугольник являются разновидностями этого четырехугольника.
2
Докажите, что две из противолежащих сторон равны и параллельны относительно друг друга. В параллелограмме ABCD это признак выглядит так: AB=CD и AB||CD. Нарисуйте диагональ АС. Полученные треугольники окажутся равными по второму признаку. АС - общая сторона, углы ВАС и АСD, также как и ВСА и CAD, равны как лежащие накрест при параллельных прямых AB и CD (дано в условии). Но так как эти накрест лежащие углы относятся и к сторонам AD и BC, значит эти отрезки также лежат на параллельных прямых, что и подвергалось доказательству.
3
Важным элементами доказательства, что ABCD параллелограмм, являются диагонали, так как в этой фигуре при пересечении в точке O они делятся на равные отрезки (AO=OC, BO=OD). Треугольники AOB и COD равны, так как равны их стороны в связи с данными условиями и вертикальные углы. Из этого следует, что и углы DBA и CDB также как и CAB и ACD равны.
4
Но эти же углы являются накрест лежащими при том, что прямые AB и CD параллельны, а роль диагонали выполняет секущая. Доказав таким образом, что и два других образованных диагоналями треугольники равны, вы получите, что данный четырехугольник параллелограмм.
5
Еще одно свойство, по которому можно доказать, что четырехугольник ABCD - параллелограмм звучит так: противоположные углы этой фигуры равны, то есть угол B равен углу D, а угол C равен A. Сумма углов треугольников, которые мы получим, если проведем диагональ AC, равна 180°. Исходя из этого получаем, что сумма всех углов данной фигуры ABCD равна 360°.
6
Вспомнив условия задачи, можно легко понять, что угол A и угол D в сумме составят 180°, аналогично угол C + угол D = 180°. В тоже время эти углы являются внутренними, лежат на одной стороне, при соответствующих им прямых и секущих. Отсюда следует, что прямые BC и AD параллельны, и приведенная фигура является параллелограммом.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500