Совет 1: Как найти синус угла в равнобедренном треугольнике

Равнобедренным треугольником называется выпуклая геометрическая фигура из трех вершин и трех соединяющих их отрезков, два из которых имеют одинаковую длину. А синус - это тригонометрическая функция, которую можно использовать для численного выражения зависимости между соотношением длин сторон и величинами углов во всех треугольниках, включая и равнобедренные.
Как найти синус угла в равнобедренном треугольнике
Инструкция
1
Если из исходных данных известна величина хотя бы одного угла (α) в равнобедренном треугольнике, это позволит найти и два других (β и γ), а значит и синус любого из них. Исходите из теоремы о сумме углов, которая утверждает, что в треугольнике она обязательно должна быть равна 180°. Если угол известной величины лежит между боковыми сторонами, величина каждого из двух других равна половине разности между 180° и известным углом. Значит, вы можете использовать в расчетах такое тождество: sin(β) = sin(γ) = sin((180°-α)/2). Если же известный угол примыкает к основанию треугольника, это тождество распадется на два равенства: sin(β) = sin(α) и sin(γ) = sin(180°-2*α).
2
Зная радиус (R) окружности, описанной около такого треугольника, и длину любой из сторон (например, а) можно не прибегая к вычислению тригонометрических функций рассчитать синус угла (α), лежащего напротив этой стороны. Используйте для этого теорему синусов - из нее вытекает, что нужная вам величина равна половине соотношения между длиной стороны и радиусом: sin(α) = ½*R/a.
3
Известные площадь (S) и длина боковой стороны (а) равнобедренного треугольника позволят рассчитать синус угла (β), лежащего напротив основания фигуры. Для этого удвойте площадь и поделите результат на возведенную в квадрат длину боковой стороны: sin(β) = 2*S/a². Если кроме длины боковой стороны известна и длина основания (b), квадрат можно заменить произведением длин этих двух сторон: sin(β) = 2*S/(a*b).
4
Если известны длины боковой стороны (а) и основания (b) равнобедренного треугольника, для вычисления синуса угла при основании (α) можно задействовать даже теорему косинусов. Из нее вытекает, что косинус этого угла равен половине отношения длины основания к длине боковой стороны: cos(α) = ½*b/a. Синус и косинус связаны таким равенством: sin²(α) = 1-cos²(α). Поэтому для вычисления синуса извлеките квадратный корень из разницы между единицей и четвертью соотношения квадратов длин основания и боковой стороны: sin(α) = √(1-cos2(α)) = √(1-¼*b²/а²).
Источники:
  • рассчитать синус

Совет 2: Как найти высоту в равнобедренном треугольнике

У равнобедренного треугольника две стороны равны, углы при его основании тоже равны. Поэтому высоты, проведенные к боковым сторонам, будут равны друг другу. Высота, проведенная к основанию равнобедренного треугольника, будет одновременно медианой и биссектрисой этого треугольника.
Как найти высоту в равнобедренном треугольнике
Инструкция
1
Пусть высота AE проведена к основанию BC равнобедренного треугольника ABC. Треугольник AEB будет прямоугольным, так как AE - высота. Боковая сторона AB будет гипотенузой этого треугольника, а BE и AE - его катетами.
По теореме Пифагора (AB^2) = (BE^2)+(AE^2). Тогда (BE^2) = sqrt((AB^2)-(AE^2)). Так как AE одновременно и медиана треугольника ABC, то BE = BC/2. Следовательно, (BE^2) = sqrt((AB^2)-((BC^2)/4)).
Если задан угол при основании ABC, то из прямоугольного треугольника высота AE равна AE = AB/sin(ABC). Угол BAE = BAC/2, так как AE - биссектриса треугольника. Отсюда, AE = AB/cos(BAC/2).
2
Пусть теперь проведена высота BK к боковой стороне AC. Эта высота уже не является ни медианой, ни биссектрисой треугольника. Для вычисления ее длины существует общая формула.
Пусть S - площадь этого треугольника. Сторону AC, на которую опущена высота, можно обозначить за b. Тогда из формулы площади треугольника будет находиться длина высоту BK: BK = 2S/b.
3
Из этой формулы видно, что высота, проведенная к стороне с (AB), будет иметь такую же длину, так как b = c = AB = AC.
Источники:
  • высоты равнобедренного треугольника

Совет 3: Как найти синус угла между векторами

Вектор в многомерном евклидовом пространстве задается координатами своей начальной точки и точки, определяющей его величину и направление. Различие между направлениями двух таких векторов определяется величиной угла. Часто в разного рода задачах из области физики и математики предлагается найти не сам этот угол, а величину производной от него тригонометрической функции - синуса.
Как найти синус угла между векторами
Инструкция
1
Используйте для определения синуса угла между двумя векторами известные формулы скалярного умножения векторов. Таких формул существует, как минимум, две. В одной из них в качестве переменной задействован косинус нужного угла, узнав который вы сможете вычислить и синус.
2
Составьте равенство и вычлените из него косинус. По одной формуле скалярное произведение векторов равно их длинам, перемноженным друг на дружку и на косинус угла, а по другой - сумме произведений координат вдоль каждой из осей. Приравняв обе формулы можно сделать вывод, что косинус угла должен быть равен отношению суммы произведений координат к произведению длин векторов.
3
Запишите полученное равенство. Для этого надо обозначить координаты обоих векторов. Допустим, они даны в трехмерной декартовой системе и их начальные точки перенесены в начало координатной сетки. Направление и величина первого вектора будет задана точкой (X₁,Y₁,Z₁), второго - (X₂,Y₂,Z₂), а угол обозначьте буквой γ. Тогда длины каждого из векторов можно высчитать, например, по теореме Пифагора для треугольников, образуемых их проекциями на каждую из координатных осей: √(X₁² + Y₁² + Z₁²) и √(X₂² + Y₂² + Z₂²). Подставьте эти выражения в сформулированную на предыдущем шаге формулу и вы получите такое равенство: cos(γ) = (X₁*X₂ + Y₁*Y₂ + Z₁*Z₂) / (√(X₁² + Y₁² + Z₁²) * √( X₂² + Y₂² + Z₂²)).
4
Используйте тот факт, что сумма возведенных в квадрат значений синуса и косинуса от угла одной величины всегда дает единицу. Значит, возведя полученное на предыдущем шаге выражение для косинуса в квадрат и отняв от единицы, а затем найди квадратный корень, вы решите задачу. Запишите нужную формулу в общем виде: sin(γ) = √(1-cos(γ)²) = √(1 - ((X₁*X₂ + Y₁*Y₂ + Z₁*Z₂) / (√(X₁² + Y₁² + Z₁²) * √( X₂² + Y₂² + Z₂²))²) = √(1 - ((X₁*X₂ + Y₁*Y₂ + Z₁*Z₂)² / ((X₁² + Y₁² + Z₁²) * ( X₂² + Y₂² + Z₂²))).
Видео по теме

Совет 4: Как найти длину высоты в равнобедренном треугольнике

Высотами в треугольнике называют три отрезка прямых, каждый из которых перпендикулярен одной из сторон и соединяет ее с противолежащей вершиной. Как минимум две стороны и два угла в равнобедренном треугольнике имеют одинаковые величины, поэтому и длины двух высот должны быть равны. Это обстоятельство значительно упрощает вычисление длин высот фигуры.
Как найти длину высоты в равнобедренном треугольнике
Инструкция
1
Высоту (Hc), проведенную к основанию равнобедренного треугольника, можно рассчитать, зная длины этого основания (c) и боковой стороны (a). Для этого можно использовать теорему Пифагора, так как высота, боковая сторона и половина основания образуют прямоугольный треугольник. Высота и половина основания в нем являются катетами, поэтому для решения задачи извлеките корень из разности между возведенной в квадрат длиной боковой стороны и четвертью квадрата длины основания: Hс = √(a²-¼*c²).
2
Эту же высоту (Hc) можно вычислить и по длине любой из сторон, если в условиях приведена величина хотя бы одного угла. Если это угол при основании треугольника (α) а известная длина определяет величину боковой стороны (a), для получения результате перемножьте длину известной стороны и синус известного угла: Hс = a*sin(α). Эта формула вытекает из теоремы синусов.
3
Если известна длина основания (с) и величина прилегающего к нему угла (α), для вычисления высоты (Hc), половину длины основания умножьте на синус известного угла и разделите на синус разницы между 90° и величиной того же угла: Hс = ½*c*sin(α)/sin(90°-α).
4
При известных размерах основания (с) и противолежащего ему угла (γ) для вычисления высоты (Hc) умножайте половину длины известной стороны на синус разницы между 90° и половиной известного угла, а результат делите на синус половины того же угла: Hс = ½*c*sin(90°-γ/2)/sin(γ/2). Эта формула, как и две предыдущие, вытекает из теоремы синусов в сочетании с теоремой о сумме углов в треугольнике.
5
Длину высоты, проведенной к одной из боковых сторон (Ha) можно вычислить, например, зная длину этой стороны (a) и площадь равнобедренного треугольника (S). Чтобы это сделать, найдите удвоенную величину соотношения между площадью и длиной известной стороны: Ha = 2*S/a.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500