Совет 1: Как найти перпендикуляр в треугольнике

В геометрии одна задача может скрывать в себе множество подзадач, требующих от решающего их человека наличия большого количества знаний. Так для операций с треугольниками, нужно знать о соотношениях между медианами, биссектрисами и сторонами, уметь разными способами вычислять площадь фигур, а также находить перпендикуляр.
Инструкция
1
Обратите внимание на то, что перпендикуляр в треугольнике необязательно должен лежать внутри фигуры. Высота, опущенная на основание, может оказаться и на продолжении стороны, как это происходит в том случае, если один из углов больше девяноста градусов, или совпадать со стороной, если треугольник прямоугольный.
2
Воспользуйтесь формулой для вычисления высоты треугольника, если задача содержит все требуемые для этого данные. Для нахождения перпендикуляра составьте дробь, в числителе которой удвоенный квадратный корень из следующего произведения: р*(р-а)(р-в)(р-с), где а, в и с – стороны треугольника, а р – его полупериметр. В знаменателе дроби должна стоять длина того основания, на которое опущен перпендикуляр.
3
Найдите высоту треугольника, воспользовавшись формулой для вычисления площади этой фигуры: для этого достаточно удвоенную площадь поделить на длину основания. Для нахождения площади используйте другие формулы: например, найти эту величину можно через полупроизведение двух сторон треугольника на синус угла между ними.
4
Запомните основное соотношение между высотами треугольника: оно обратно пропорционально отношению оснований. Также выучите стандартные формулы, позволяющие быстро найти перпендикуляр в равностороннем и равнобедренном треугольнике. В первом случае высота являет собой произведение стороны треугольника на синус угла в 60 градусов (как следствие формулы для вычисления площади), во втором – удвоенному корню из разности квадрата двойной длины боковой стороны и квадрата основания.
5
Посчитайте перпендикуляр треугольника, введя данные в графы онлайн-калькулятора. Для этого вам необходимо знать длины сторон данной фигуры, так как расчет проводится по первой указанной выше формуле, использующей полупериметр.

Совет 2: Как найти длину перпендикуляра

Строго говоря, перпендикуляром называют прямую, которая пересекает заданную линию под углом в 90°. Прямая бесконечна по определению, поэтому говорить о длине перпендикуляра неправильно. Говоря так, обычно имеют в виду расстояние между двумя точками, лежащими на перпендикуляре. Например, между заданной точкой и ее нормальной проекцией на плоскость или между точкой в пространстве и точкой пересечения перпендикуляра, опущенного из нее, с прямой линией.
Инструкция
1
Необходимость рассчитать длину перпендикуляра может возникнуть, если он опущен из точки с указанными в условиях координатами A(X₁;Y₁) на прямую, заданную уравнением a*X + b*Y + C = 0. В этом случае сначала подставьте координаты точки в уравнение прямой и рассчитайте абсолютное значение левой части тождества: |a*X₁ + b*Y₁ + C|. Например, при координатах точки A(15;-17) и уравнении прямой 3*X + 4*Y + 140 = 0 результатом этого шага должно стать число |3*15 + 4*(-17) + 140| = |45-61+140| = 124.
2
Рассчитайте нормирующий множитель. Это дробь, в числителе которой стоит единица, а в знаменателе - квадратный корень из суммы квадратов множителей по обеим координатным осям из уравнения прямой: 1/√(X²+Y²). Для использованного выше примера величина нормирующего множителя должна быть равна 1/√(3²+4²) = 1/√25 = 0,2.
3
Приведите уравнение прямой к нормальному виду - умножьте обе части равенства на нормирующий множитель. В общем виде результат должен выглядеть так: (a*X+b*Y+C)/√(X²+Y²) = 0. Левая часть этого уравнения и определяет длину перпендикуляра в общем виде: d = (a*X+b*Y+C)/√(X²+Y²). А в практических расчетах просто перемножьте полученное на первом шаге число и рассчитанный на втором шаге коэффициент. Для примера из первого шага ответом должно стать число 124*0,2=24,8 - такова длина перпендикулярного линии отрезка, соединяющего ее с заданной точкой.
4
Для нахождения длины перпендикуляра, опущенного из точки с известными трехмерными координатами A(X₁;Y₁;Z₁) на плоскость, заданную уравнением a*X + b*Y + c*Z + D = 0 используйте такую же последовательность операций. В этом случае под знак радикала в нормирующем множителе добавится третье слагаемое √(X²+Y²+Z²), как и в числитель дроби формулы, определяющей длину перпендикуляра в общем виде: d = (a*X+b*Y+c*Z+D)/√(X²+Y²+Z²).

Совет 3: Как найти высоту в равнобедренном треугольнике

У равнобедренного треугольника две стороны равны, углы при его основании тоже равны. Поэтому высоты, проведенные к боковым сторонам, будут равны друг другу. Высота, проведенная к основанию равнобедренного треугольника, будет одновременно медианой и биссектрисой этого треугольника.
Инструкция
1
Пусть высота AE проведена к основанию BC равнобедренного треугольника ABC. Треугольник AEB будет прямоугольным, так как AE - высота. Боковая сторона AB будет гипотенузой этого треугольника, а BE и AE - его катетами.
По теореме Пифагора (AB^2) = (BE^2)+(AE^2). Тогда (BE^2) = sqrt((AB^2)-(AE^2)). Так как AE одновременно и медиана треугольника ABC, то BE = BC/2. Следовательно, (BE^2) = sqrt((AB^2)-((BC^2)/4)).
Если задан угол при основании ABC, то из прямоугольного треугольника высота AE равна AE = AB/sin(ABC). Угол BAE = BAC/2, так как AE - биссектриса треугольника. Отсюда, AE = AB/cos(BAC/2).
2
Пусть теперь проведена высота BK к боковой стороне AC. Эта высота уже не является ни медианой, ни биссектрисой треугольника. Для вычисления ее длины существует общая формула.
Пусть S - площадь этого треугольника. Сторону AC, на которую опущена высота, можно обозначить за b. Тогда из формулы площади треугольника будет находиться длина высоту BK: BK = 2S/b.
3
Из этой формулы видно, что высота, проведенная к стороне с (AB), будет иметь такую же длину, так как b = c = AB = AC.
Источники:
  • высоты равнобедренного треугольника

Совет 4: Как найти длину высоты в треугольнике

Треугольник – одна из интереснейших фигур в геометрии. Он имеет много свойств и закономерностей. Сегодня речь пойдет о нахождении длины высоты треугольника - перпендикуляра, проведенного из вершины на противолежащую сторону или на её продолжение (такая сторона называется основанием треугольника).
Инструкция
1
Обозначьте высоту буквой h, она опускается на сторону a. При этом необходимо помнить, что в разных треугольниках высоты выражаются по-разному. В тупоугольном одна из высот находится внутри треугольника, а остальные падают на продолжение двух сторон и находятся вне фигуры. Все высоты лежат внутри в остроугольном треугольнике. А в прямоугольном катеты являются высотами. Также необходимо упомянуть такое понятие, как ортоцентр. Ортоцентр – это точка, в которой неизменно пересекаются все три высоты. В разных треугольниках он находится в разных местах. В тупоугольном – снаружи треугольника. Внутри ортоцентр находится исключительно в остроугольном треугольнике. В прямоугольном же он совпадает с прямым углом.
2
Затем найдите число p путем сложения всех сторон и последующим делением этой суммы пополам. Получается вот так: p=2/( a+b+c). Значение p обязательно пригодится для последующих действий, будьте внимательны при его нахождении.
3
Перемножьте число p c тремя разностями. Уменьшаемым каждый раз будет являться само число p, а вычитаемыми все те же стороны. Должно получиться: p(p-a)(p-b)(p-c).
4
Из полученного результата извлеките корень и умножьте результат в два раза. 2^p(p-a)(p-b)(p-c). На данном этапе вычислений без калькулятора скорее всего не обойтись. Получение большого подкоренного выражения в данном случае имеет большую вероятность, поэтому не удивляйтесь.
5
Разделите последнее число на основание a. В итоге действие выглядят таким образом: h=(2^(p-a)(p-b)(p-c))/a. Дальнейшие операции зависят от полученного значения. Возможно, будет необходимо вынести что-либо из-под корня для более точного значения. Результат готов.
Видео по теме
Обратите внимание
Несколько формул, для нахождения длины высоты треугольника.  Высота- перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).
Совет полезен?
Формулы для треугольника, как найти сторону, биссектрису, медиану, высоту, угол...  H - высота из прямого угла. a, b - катеты. с - гипотенуза. c1 , c2 - отрезки полученные от деления гипотенузы, высотой. α, β - углы при гипотенузе. Формула длины высоты через стороны, (H)

Совет 5: Как найти биссектрису в прямоугольном треугольнике

Биссектрисой называется луч, который делит угол пополам. Биссектриса, помимо этого, имеет ещё множество свойств и функций. А для того, чтобы вычислить ее длину в прямоугольном треугольнике, вам понадобятся формулы и инструкции приведенные ниже.
Вам понадобится
  • - калькулятор
Инструкция
1
Перемножьте между собой сторону a, сторону b, полупериметр треугольника p и цифру четыре 4*a*b. Далее полученную сумму необходимо умножить на разность полупериметра p и стороны c 4*a*b*(p-c). Извлеките корень из произведения полученного ранее. SQR(4*a*b*(p-c)). А после разделите результат на сумму стороны a и b. Таким образом, мы получили одну из формул нахождения биссектрисы с помощью теоремы Стюарта. Её же можно трактовать иным способом, представив таким образом: SQR(a*b*(a+b+c)(a+b-c)). За исключением этой формулы существует ещё несколько вариантов, полученных на основании все той же теоремы.
2
Перемножьте сторону a на сторону b. Из результата отнимите произведение длин отрезков e и d, на которые биссектриса l делит сторону c. Получаются действия вот такого вида a*b-e*d. Далее необходимо извлечь корень из представленной разности SQR (a*b-e*d). Это ещё один способ определения длины биссектрисы в треугольниках. Делайте все вычисления аккуратно, лучше повторяя хотя бы 2 раза для исключения возможных ошибок.
3
Умножьте число два на стороны a и b, а также косинус угла с, деленный пополам. Далее полученное произведение нужно разделить на сумму стороны a и b. При условии, в котором известны косинусы, этот способ вычисления станет для вас наиболее удобным.
4
Отнимите из косинуса угла a косинус угла b. После полученную разность разделите пополам. Делитель, который понадобится нам в дальнейшем, вычислен. Теперь осталось лишь поделить высоту, проведенную к стороне c, на вычисленное ранее число. Сейчас был продемонстрирован ещё один способ вычислений для нахождения биссектрисы в прямоугольном треугольнике. Выбор метод для поиска нужных вам цифр остается за вами, а также зависит от данных, которые предоставлены в условии о той или иной геометрической фигуре.
Видео по теме

Совет 6: Как найти длину высоты в равнобедренном треугольнике

Высотами в треугольнике называют три отрезка прямых, каждый из которых перпендикулярен одной из сторон и соединяет ее с противолежащей вершиной. Как минимум две стороны и два угла в равнобедренном треугольнике имеют одинаковые величины, поэтому и длины двух высот должны быть равны. Это обстоятельство значительно упрощает вычисление длин высот фигуры.
Инструкция
1
Высоту (Hc), проведенную к основанию равнобедренного треугольника, можно рассчитать, зная длины этого основания (c) и боковой стороны (a). Для этого можно использовать теорему Пифагора, так как высота, боковая сторона и половина основания образуют прямоугольный треугольник. Высота и половина основания в нем являются катетами, поэтому для решения задачи извлеките корень из разности между возведенной в квадрат длиной боковой стороны и четвертью квадрата длины основания: Hс = √(a²-¼*c²).
2
Эту же высоту (Hc) можно вычислить и по длине любой из сторон, если в условиях приведена величина хотя бы одного угла. Если это угол при основании треугольника (α) а известная длина определяет величину боковой стороны (a), для получения результате перемножьте длину известной стороны и синус известного угла: Hс = a*sin(α). Эта формула вытекает из теоремы синусов.
3
Если известна длина основания (с) и величина прилегающего к нему угла (α), для вычисления высоты (Hc), половину длины основания умножьте на синус известного угла и разделите на синус разницы между 90° и величиной того же угла: Hс = ½*c*sin(α)/sin(90°-α).
4
При известных размерах основания (с) и противолежащего ему угла (γ) для вычисления высоты (Hc) умножайте половину длины известной стороны на синус разницы между 90° и половиной известного угла, а результат делите на синус половины того же угла: Hс = ½*c*sin(90°-γ/2)/sin(γ/2). Эта формула, как и две предыдущие, вытекает из теоремы синусов в сочетании с теоремой о сумме углов в треугольнике.
5
Длину высоты, проведенной к одной из боковых сторон (Ha) можно вычислить, например, зная длину этой стороны (a) и площадь равнобедренного треугольника (S). Чтобы это сделать, найдите удвоенную величину соотношения между площадью и длиной известной стороны: Ha = 2*S/a.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500