Совет 1: Как найти перпендикуляр в треугольнике

В геометрии одна задача может скрывать в себе множество подзадач, требующих от решающего их человека наличия большого количества знаний. Так для операций с треугольниками, нужно знать о соотношениях между медианами, биссектрисами и сторонами, уметь разными способами вычислять площадь фигур, а также находить перпендикуляр.
Инструкция
1
Обратите внимание на то, что перпендикуляр в треугольнике необязательно должен лежать внутри фигуры. Высота, опущенная на основание, может оказаться и на продолжении стороны, как это происходит в том случае, если один из углов больше девяноста градусов, или совпадать со стороной, если треугольник прямоугольный.
2
Воспользуйтесь формулой для вычисления высоты треугольника, если задача содержит все требуемые для этого данные. Для нахождения перпендикуляра составьте дробь, в числителе которой удвоенный квадратный корень из следующего произведения: р*(р-а)(р-в)(р-с), где а, в и с – стороны треугольника, а р – его полупериметр. В знаменателе дроби должна стоять длина того основания, на которое опущен перпендикуляр.
3
Найдите высоту треугольника, воспользовавшись формулой для вычисления площади этой фигуры: для этого достаточно удвоенную площадь поделить на длину основания. Для нахождения площади используйте другие формулы: например, найти эту величину можно через полупроизведение двух сторон треугольника на синус угла между ними.
4
Запомните основное соотношение между высотами треугольника: оно обратно пропорционально отношению оснований. Также выучите стандартные формулы, позволяющие быстро найти перпендикуляр в равностороннем и равнобедренном треугольнике. В первом случае высота являет собой произведение стороны треугольника на синус угла в 60 градусов (как следствие формулы для вычисления площади), во втором – удвоенному корню из разности квадрата двойной длины боковой стороны и квадрата основания.
5
Посчитайте перпендикуляр треугольника, введя данные в графы онлайн-калькулятора. Для этого вам необходимо знать длины сторон данной фигуры, так как расчет проводится по первой указанной выше формуле, использующей полупериметр.

Совет 2: Как найти длину перпендикуляра

Строго говоря, перпендикуляром называют прямую, которая пересекает заданную линию под углом в 90°. Прямая бесконечна по определению, поэтому говорить о длине перпендикуляра неправильно. Говоря так, обычно имеют в виду расстояние между двумя точками, лежащими на перпендикуляре. Например, между заданной точкой и ее нормальной проекцией на плоскость или между точкой в пространстве и точкой пересечения перпендикуляра, опущенного из нее, с прямой линией.
Инструкция
1
Необходимость рассчитать длину перпендикуляра может возникнуть, если он опущен из точки с указанными в условиях координатами A(X₁;Y₁) на прямую, заданную уравнением a*X + b*Y + C = 0. В этом случае сначала подставьте координаты точки в уравнение прямой и рассчитайте абсолютное значение левой части тождества: |a*X₁ + b*Y₁ + C|. Например, при координатах точки A(15;-17) и уравнении прямой 3*X + 4*Y + 140 = 0 результатом этого шага должно стать число |3*15 + 4*(-17) + 140| = |45-61+140| = 124.
2
Рассчитайте нормирующий множитель. Это дробь, в числителе которой стоит единица, а в знаменателе - квадратный корень из суммы квадратов множителей по обеим координатным осям из уравнения прямой: 1/√(X²+Y²). Для использованного выше примера величина нормирующего множителя должна быть равна 1/√(3²+4²) = 1/√25 = 0,2.
3
Приведите уравнение прямой к нормальному виду - умножьте обе части равенства на нормирующий множитель. В общем виде результат должен выглядеть так: (a*X+b*Y+C)/√(X²+Y²) = 0. Левая часть этого уравнения и определяет длину перпендикуляра в общем виде: d = (a*X+b*Y+C)/√(X²+Y²). А в практических расчетах просто перемножьте полученное на первом шаге число и рассчитанный на втором шаге коэффициент. Для примера из первого шага ответом должно стать число 124*0,2=24,8 - такова длина перпендикулярного линии отрезка, соединяющего ее с заданной точкой.
4
Для нахождения длины перпендикуляра, опущенного из точки с известными трехмерными координатами A(X₁;Y₁;Z₁) на плоскость, заданную уравнением a*X + b*Y + c*Z + D = 0 используйте такую же последовательность операций. В этом случае под знак радикала в нормирующем множителе добавится третье слагаемое √(X²+Y²+Z²), как и в числитель дроби формулы, определяющей длину перпендикуляра в общем виде: d = (a*X+b*Y+c*Z+D)/√(X²+Y²+Z²).
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500