Совет 1: Как найти площадь сферы

Сферой называют поверхность шара. По-другому ее можно определить как трехмерную геометрическую фигуру, все точки которой находятся на одинаковом расстоянии от точки, называемой центром сферы. Чтобы выяснить размеры этой фигуры достаточно знать лишь один параметр - например, радиус, диаметр, площадь или объем. Их значения связаны между собой постоянными соотношениями, которые позволяют вывести простую формулу вычисления каждого из них.
Инструкция
1
Если известна длина диаметра сферы (d), то для нахождения площади ее поверхности (S) возводите этот параметр в квадрат и умножайте на число Пи (π): S=π∗d². Например, если длина диаметра составляет два метра, то площадь сферы составит 3,14∗2²=12,56 квадратных метров.
2
Если известна длина радиуса (r), то площадь поверхности сферы (S) будет составлять учетверенное произведение возведенного в квадрат радиуса на число Пи (π): S=4∗π∗r². Например, при длине радиуса сферы в три метра его площадь составит 4∗3,14∗3²=113,04 квадратных метров.
3
Если известен объем (V) пространства, ограниченного сферой, то сначала можно найти ее диаметр (d), а затем воспользоваться формулой, приведенной в первом шаге. Так как объем равен одной шестой части от произведения числа Пи на возведенную в куб длину диаметра сферы (V=π∗d³/6), то диаметр можно определить, как кубический корень из шести объемов, разделенных на число Пи: d=³√(6∗V/π). Подставив это значение в формулу из первого шага, получим: S=π∗(³√ (6∗V/π))². Например, при объеме ограниченного сферой пространства равном 500 кубометров вычисление ее площади будет выглядеть так: 3,14∗(³√(6∗500/3,14))² = 3,14∗(³√955,41)² = 3,14∗9,85² = 3,14∗97,02 = 304,64 квадратных метра.
4
Производить все эти расчеты в уме довольно затруднительно, поэтому придется воспользоваться каким либо из калькуляторов. Например, это может быть вычислитель, встроенный в поисковые системы Google или Nigma. Google отличается в лучшую сторону тем, что умеет самостоятельно определять порядок операций, а Nigma потребует от вас тщательно расставить все скобки. Для вычисления площади сферы по данным, например, из второго шага поисковый запрос, который надо ввести в Google, будет выглядеть так: «4*пи*3^2». А для наиболее сложного случая с вычислением кубического корня и возведением в квадрат из третьего шага запрос будет таким: «пи*(6*500/пи)^(2/3)».

Совет 2: Как найти площадь шара

Все планеты солнечной системы имеют форму шара. Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств. Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара. Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.
Инструкция
1
Если взять полукруг или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара, и ее сечением является окружность. От шара она отличается тем, что является полой. Ось как у шара, так и у сферы совпадает с диаметром и проходит через центр. Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство планет и небесных тел. В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения - круги разной площади.
2
Шар и сфера - взаимозаменяемые тела, в отличие от конуса, несмотря на то, что конус также является телом вращения. Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она вращается - по горизонтали или по вертикали. Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара, и не считается взаимозаменяемым телом вращения.
3
Самый большой из возможных кругов получается при сечении шара плоскостью, проходящей через центр О. Все круги, которые проходят через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра. Через две точки A и B, располагающиеся в любом месте поверхности шара, может проходить бесконечное количество кругов или окружностей. Именно по этой причине через полюса Земли может быть проведено неограниченное количество меридианов.
4
При нахождении площади шара рассматривается, прежде всего, площадь сферической поверхности.Площадь шара, а точнее, сферы, образующей его поверхность, может быть рассчитана на основании площади круга с тем же радиусом R. Поскольку площадь круга есть произведение полуокружности на радиус, его можно рассчитать следующим образом:S = ?R^2Так как через центр шара проходят четыре основных больших круга, то, соответственно площадь шара (сферы) равна:S = 4 ?R^2
5
Данная формула может быть полезна в том случае, если известен либо диаметр, либо радиус шара или сферы. Однако, эти параметры приведены в качестве условий не во всех геометрических задачах. Существуют и такие задачи, в которых шар вписан в цилиндр. В этом случае, следует воспользоваться теоремой Архимеда, суть которой заключается в том, что площадь поверхности шара в полтора раза меньше полной поверхности цилиндра:S = 2/3 S цил., где S цил. -площадь полной поверхности цилиндра.
Видео по теме
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500