Совет 1: Как найти высоту прямоугольной пирамиды

Пирамида - это многогранник, в основании которого лежит многоугольник, а остальные грани - треугольники, сходящиеся в общей вершине. Решение задач с пирамидами во многом зависит от вида пирамиды. У прямоугольной пирамиды одно из боковых ребер перпендикулярно основанию, это ребро и есть высота пирамиды.
Инструкция
1
Определите вид пирамиды по ее основанию. Если в основании лежит треугольник, то это треугольная прямоугольная пирамида. Если четырехугольник — четырёхугольная и так далее. В классических задачах встречаются пирамиды, основание которой либо квадрат, либо равносторонние/равнобедренные/прямоугольные треугольники.
2
Если в основании пирамиды лежит квадрат, найдите высоту (она же — ребро пирамиды) через прямоугольный треугольник. Помните — в стереометрии на рисунках квадрат выглядит как параллелограмм. Например, дана прямоугольная пирамида SABCD с вершиной S, которая проецируется в вершину квадрата B. Ребро SB перпендикулярно плоскости основания. Рёбра SA и SC равны между собой и перпендикулярны сторонам AD и DC соответственно.
3
Если в задаче даны рёбра AB и SA, найдите высоту SB из прямоугольного ΔSAB по теореме Пифагора. Для этого из квадрата SA вычтите квадрат AB. Извлеките корень. Высота SB найдена.
4
Если не дана сторона квадрата AB, а, например, диагональ, то помните формулу: d=a·√2. Также выражайте сторону квадрата из формул площади, периметра, вписанных и описанных радиусов, если это дано в условии.
5
Если в задаче дано ребро AB и ∠SAB, используйте тангенс: tg∠SAB=SB/AB. Выразите из формулы высоту, подставьте числовые значения, тем самым найдя SB.
6
Если дан объём и сторона основания, найдите высоту, выразив её из формулы: V=⅓·S·h. S — площадь основания, то есть AB2; h — высота пирамиды, т. е. SB.
7
Если в основании пирамиды SABC (S проецируется в В, как в п.2, т. е. SB – высота) лежит треугольник и указаны данные для площади (сторона у равностороннего треугольника, сторона и основание или сторона и углы у равнобедренного, катеты у прямоугольного), находите высоту из формулы объёма: V=⅓·S·h. Вместо S подставьте формулу площади треугольника в зависимости его вида, затем выразите h.
8
Если дана апофема SK грани CSA и сторона основания AB, найдите SB из прямоугольного треугольника SKB. Из квадрата SK вычтите квадрат KB, получите SB в квадрате. Извлеките корень и получите высоту.
9
Если дана апофема SK и угол между SK и KB (∠SKB), используйте функцию синуса. Отношение высоты SB к гипотенузе SK равно sin∠SKB. Выразите высоту и подставьте числовые значения.

Совет 2: Как найти высоту пирамиды

Любое геометрическое тело может быть интересно не только школьнику. В окружающем мире довольно часто встречаются предметы в форме пирамиды. И это не только знаменитые египетские гробницы. Часто говорят о целебных свойствах пирамиды, и кому-то наверняка захочется испытать их на себе. Но для этого надо знать ее размеры, в том числе высоту.
Вам понадобится
  • Математические формулы и понятия:
  • Определение высоты пирамиды
  • Признаки подобия треугольников
  • Свойства высоты треугольника
  • Теорема синусов и косинусов
  • Таблицы синусов и косинусов
  • Инструменты:
  • линейка
  • карандаш
  • транспортир
Инструкция
1
Вспомните, что такое высота пирамиды. Это есть перпендикуляр, опущенный из вершины пирамиды к ее основанию.
Пирамида с необходимыми обозначениями
2
Постройте пирамиду по заданным параметрам. Обозначьте ее основание латинскими буквами А, B, C,D... в зависимости от количества углов. Вершину пирамиды обозначьте S.
3
Вам известны стороны, углы основания и наклона ребер к основанию. Чертеж получится в проекции на плоскости, поэтому для верности обозначьте на нем известные вам данные. Из точки S опустите высоту пирамиды и обозначьте ее h. Точку пересечения высоты с основанием пирамиды обознчьте S1.
4
Из вершины пирамиды проведите высоту любой боковой грани. Обозначьте точку ее пересечения с основанием, например, А1. Вспомните свойства высоты остроугольного треугольника. Она делит треугольник на два подобных прямоугольных треугольника. Вычислите косинусы нужных вам углов по формуле

Cos(A) = (b2+c2-a2)/(2*b*c), где а,b и с - стороны треугольника, в данном случае АSB (a=BA,b=AS,c=AB).

Вычислите высоту боковой грани SA1 по косинусу угла АSA1, равного углу SBA из свойств высоты треугольника, и известному боковому ребру AS.
5
Соедините точки А1 и S1. У вас получился прямоугольный треугольник, в котором вам известна гипотенуза SA1 и угол наклона боковой грани пирамиды к ее основанию SA1S1. По теореме синусов вычислите катет SS1, который одновременно является и высотой пирамиды.
Видео по теме
Обратите внимание
Для вычисления высоты любой пирамиды необходимо сначала вычислить один из боковых треугольников.

В правильной пирамиде высота боковой грани называется апофемой и делит сторону основания пирамиды пополам.
Совет полезен?
В правильной пирамиде все стороны наклонены к основанию под одним и тем же углом, поэтому высоту пирамиды можно вычислить и без построения дополнительных треугольников.

Высота боковой грани делит ее на 2 подобных прямоугольных треугольника. Соответственно, угол SAB равен углу А1SB.
Источники:
  • Пирамиды
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500