Совет 1: Как найти промежутки возрастания и убывания функции

Определение промежутков возрастания и убывания функции – это один из основных аспектов исследования поведения функции наряду с нахождением точек экстремумов, в которых происходит перелом от убывания к возрастанию и наоборот.
Инструкция
1
Функция y = F(x) является возрастающей на определенном интервале, если для любых точек x1 < x2 этого интервала выполняется условие F(x1) < F(x2). Т.е. чем больше значение аргумента, тем больше значение функции. Для убывающей функции справедливо F(x1) > F(x2), где x1 всегда > x2 для любых точек на интервале.
2
Существуют достаточные признаки возрастания и убывания функции, которые вытекают из результата вычисления производной. Если производная функции положительна для любой точки интервала, то функция возрастает, если отрицательна – убывает.
3
Чтобы найти промежутки возрастания и убывания функции, нужно найти область ее определения, вычислить производную, решить неравенства вида F’(x) > 0 и F’(x) < 0, а затем включить в полученный интервал пограничные точки, в которых функция непрерывна и определена и исключить те, в которых ее значение не может быть определено.
4
Рассмотрим пример.
Найти промежутки возрастания и убывания функции для y = (3·x² + 2·x - 4)/x².
5
Решение.
1. Найдем область определения функции. Очевидно, что выражение, стоящее в знаменателе, должно всегда быть отличным от нуля. Поэтому точка 0 исключается из области определения: функция определена при x ∈ (-∞; 0)∪(0; +∞).
6
2. Вычислим производную функции:
y’(x) = ((3·x² + 2·x - 4)’ ·x² – (3·x² + 2·x - 4) · (x²)’)/x^4 = ((6·x + 2) ·x² – (3·x² + 2·x - 4) ·2·x)/x^4 = (6·x³ + 2·x² – 6·x³ – 4·x² + 8·x)/x^4 = (8·x – 2·x²)/x^4 = 2· (4 - x)/x³.
7
3. Решим неравенства y’ > 0 и y’ < 0:
(4 - x)/x³ > 0;
(4 - x)/x³ < 0.
8
4. Левая часть неравенства имеет один действительный корень х = 4 и обращается в бесконечность при x = 0. Поэтому значение x = 4 включается и в промежуток возрастания функции, и в промежуток убывания, а точка 0 не включается никуда.
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ [2; +∞) и убывает при x (0; 2].

Совет 2: Как найти на функции промежутки убывания

Функция представляет собой строгую зависимость одного числа от другого, или значения функции (y) от аргумента (х). Каждый процесс (не только в математике), может быть описан своей функцией, которая будет иметь характерные особенности: промежутки убывания и возрастания, точки минимумов и максимумов и так далее.
Вам понадобится
  • - бумага;
  • - ручка.
Инструкция
1
Функция e=f(x) называется убывающей на интервале (a, b), если любое значение ее аргумента х2 большего х1, принадлежащих интервалу (а,b), приводит к тому, что f(x2) меньше f(x1). Если коротко, то: для любых x2 и x1 таких, что x2 > x1, принадлежащих (a, b) выполнено f(x2)
2
Известно, что на промежутках убывания производная функции отрицательна, то есть алгоритм поиска промежутков убывания сводится к двум следующим действиям:
1. Определение производной функции y=f(x).
2. Решение неравенства f’(x)
3
Пример 1.
Найти промежуток убывания функции:
y=2x^3 –15x^2+36x-6.
Производная данной функции будет равна: y’=6x^2-30x+36. Далее необходимо решить неравенство y’
4
Пример 2.
Найти промежутки убывания f(x)=sinx +x.
Производная данной функции будет равна: f’(x)=cosx+1.
Решая неравенство cosx+1
Источники:
  • как найти на функции промежутки убывания
Поиск
ВАЖНО! Проблемы сердца сильно "помолодели". Потратьте 3 минуты на просмотр ролика. Защитите себя и близких от страшных проблем.
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500