Совет 1: Как делить уголком

Сейчас калькуляторы встроены во многие гаджеты. Но когда под рукой нет ни одного из них, выручат самые простые навыки. Делить уголком можно не только с помощью карандаша и бумаги, но и веточкой на земле или пальцем на песке.
Как делить уголком
Вам понадобится
  • - листок бумаги;
  • - ручка или карандаш.
Инструкция
1
Деление на однозначное число без остатка - самый простой случай для деления уголком. Для примера разделите 536 на 4. Для этого запишите их рядом на одной строчке, а чтобы не перепутать, поставьте между них уголок. Под горизонтальной чертой будете писать частное или результат деления.

Сначала разделите первую цифру делимого, то есть 5 на 4. Запишите под чертой 1, под пятеркой - четверку и вычтите из первой вторую. Разницу запишите внизу. Рядом напишите следующую цифру делимого, то есть 3. Получается 13. Разделите на 4, результат - тройку - пишите справа, а остаток опять снесите вниз. Перенесите к нему последнюю цифру первоначального числа, получится 16. Разделите на 4 и запишите четверку - последнюю цифру ответа. Получилось, что одна четвертая от 536 это 134.

Чтобы проверить результат перемножьте столбиком 134 и 4. Получится 536. Если проверка не сработала, ищите ошибку в переносе цифр при делении уголком.
2
Деление круглых чисел принципиально ничем не отличается. Только перед началом деления избавьтесь от лишних нулей. Под такими понимаются разряды, которые есть в обоих числах. Например, если надо разделить 371000 на 700, то перед делением уголком зачеркните последние два нуля в каждом числе. То есть делите 3710 на 7. Обязательно надо зачеркивать именно одинаковое число нулей, иначе результат окажется неверным.
3
При делении правильных дробей проделайте обратную операцию: добавьте порядков в делимое, чтобы их число соответствовало делителю. Например, если вы делите 5 на 16, то припишите один ноль. Если 5 надо разделить на 160, то припишите два нуля. Но при этом не забудьте поставить точку и такое же число нулей в частном. В первом случае ответ начнется с десятых долей, во втором - с сотых. Другими словами, деление уголком - это простейший способ перевести правильную дробь в десятичную.

Совет 2 : Что такое многочлен

Математическая наука изучает различные структуры, последовательности чисел, отношений между ними, составление уравнений и их решение. Это формальный язык, которым можно четко описать приближенные к идеальным свойства реальных объектов, изучаемых в других областях науки. Одной из таких структур является многочлен.
Что такое многочлен
Инструкция
1
Многочлен или полином (от греч. «поли» - много и лат. «номен» - имя) – класс элементарных функций классической алгебры и алгебраической геометрии. Это функция одной переменной, которая имеет вид F(x) = c_0 + c_1*x + … + c_n*x^n, где c_i – фиксированные коэффициенты, x – переменная.
2
Многочлены применяются во многих разделах, в том числе рассмотрении нуля, отрицательных и комплексных чисел, теории групп, колец, узлов, множеств и т.д. Использование полиномиальных вычислений значительно упрощает выражение свойств разных объектов.
3
Основные определения многочлена:
• Каждое слагаемое полинома называется одночленом или мономом.
• Многочлен, состоящий из двух одночленов, называют двучленом или биномом.
• Коэффициенты полинома – вещественные или комплексные числа.
• Если старший коэффициент равен 1, то многочлен называют унитарным (приведенным).
• Степени переменной в каждом одночлене – целые неотрицательные числа, максимальная степень определяет степень многочлена, а его полной степенью называется целое число, равное сумме всех степеней.
• Одночлен, соответствующий нулевой степени, называется свободным членом.
• Многочлен, все одночлены которого имеют одинаковую полную степень, называется однородным.
4
Некоторые часто используемые многочлены названы по фамилии ученого, который их определил, а также описал функции, которые они задают. Например, Бином Ньютона – это формула для разложения полинома двух переменных на отдельные слагаемые для вычисления степеней. Это известные из школьной программы записи квадратов суммы и разности (a + b)^2 – a^2 + 2*a*b + b^2, (a – b)^2 = a^2 – 2*a*b + b^2 и разность квадратов (a^2 – b^2) = (a - b)*(a + b).
5
Если допустить в записи многочлена отрицательные степени, то получится многочлен или ряд Лорана; многочлен Чебышева используется в теории приближений; многочлен Эрмита – в теории вероятностей; Лагранжа – для численного интегрирования и интерполяции; Тейлора – при аппроксимации функции и т.д.
Обратите внимание
Бином Ньютона часто упоминают в книгах («Мастер и Маргарита») и фильмах («Сталкер»), когда герои решают математические задачи. Этот термин на слуху, поэтому считается самым известным многочленом.

Совет 3 : Как найти степень многочлена

Многочлен - это сумма одночленов. Одночлен же - это произведение нескольких сомножителей, которые являются числом или буквой. Степень неизвестной - это количество ее перемножений на саму себя.
Как найти степень многочлена
Инструкция
1
Приведите подобные одночлены, если этого еще не сделано. Подобные одночлены - это одночлены одинакового вида, то есть одночлены с одинаковыми неизвестными одинаковой степени.
2
Примите одну из неизвестных букв за главную. Если она не указана в условии задачи, за главную можно принять любую неизвестную букву.
3
Найдите наивысшую степень для главной буквы. Это максимальная имеющаяся в многочлене степень для этой неизвестной. Именно она и называется степенью многочлена по этой букве.
4
Укажите, если это необходимо, степень многочлена по другим буквам. Таким образом, для многочлена с неизвестными x и y существует степень многочлена по x и степень многочлена по y.
5
Возьмите, например, многочлен 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y². В этом многочлене две неизвестных - x и y.
6
Найдите подобные одночлены. Здесь есть подобные одночлены члены с y во второй степени и x в третьей. Это 2*y²*x³ и -y²*x³. Еще в данном многочлене есть подобные одночлены с y в четвертой степени. Это 6*y²*y² и -6*y²*y².
7
Соедините подобные одночлены. Одночлены со второй степенью y и третьей степенью x придут к виду y²*x³, а одночлены с четвертой степенью y сократятся. Получится y²*x³+4*y*x+5*x²+3-y²*x³.
8
Примите за главную неизвестную букву x. Найдите максимальную степень при неизвестной x. Это одночлен y²*x³ и, соответственно, степень 3.
9
Примите за главную неизвестную букву y. Найдите максимальную степень при неизвестной y. Это одночлен y²*x³ и, соответственно, степень 2.
10
Сделайте вывод. Степень многочлена 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y² по x равна трем, а по y равна двум.
11
Учтите, что степень не обязательно является целым числом. Возьмите многочлен √x+5*y. Подобных одночленов у него нет.
12
Найдите степень многочлена √x+5*y по y. Она равна максимальной степени y, то есть единице.
13
Найдите степень многочлена √x+5*y по x. Неизвестная x находится под корнем, значит ее степень будет дробью. Так как корень квадратный, то степень x равна 1/2.
14
Сделайте вывод. Для многочлена √x+5*y степень по x равна 1/2, а степень по y равна 1.
Видео по теме
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500