Совет 1: Как считать комплексные числа

Комплексными называются числа вида z = a +bi, где a – действительная часть, обозначаемая Re z, b – мнимая часть, обозначаемая Im z, i – мнимая единица. Множество комплексных чисел представляет собой расширение множества действительных чисел и обозначается символом C. Над комплексными числами можно осуществлять те же арифметические операции, что и над действительными.
Инструкция
1
Комплексные числа x + yi и a + bi называются равными, если равны составляющие их части, т.е. x = a, y = b.
2
Для сложения двух комплексных чисел необходимо сложить их мнимые и действительные части соответственно, т.е.
(x + yi) +(a + bi) = (x + a) + (y + b)i.
3
Чтобы найти разность двух комплексных чисел, необходимо найти разность их мнимых и действительных частей, т.е
(x + yi) - (a + bi) = (x - a) + (y - b)i.
4
При умножении комплексных чисел, составляющие их части перемножаются между собой, т.е
(x + yi) * (a + bi) = xa + yai + xbi + ybi? = (xa – yb) + (xb + ya)i.
5
Деление комплексных чисел осуществляется по следующему правилу
(x + yi) / (a + bi) = (xa + yb) / (a? + b?) + ((xb - ya) / (a? + b?))i.
6
Модуль комплексного числа определяет длину вектора на комплексной плоскости и находится по формуле
| x + yi | = v(x? + y?).

Совет 2: Как возвести комплексное число в степень

Действительных чисел не достаточно для того, чтобы решить любое квадратное уравнение. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел - это x^2+1=0. При его решении получается, что x=±sqrt(-1), а согласно законам элементарной алгебры, извлечь корень четной степени из отрицательного числа нельзя. В данном случае есть два пути: следовать установленным запретам и считать, что это уравнение корней не имеет, или же расширить систему действительных чисел до такой степени, что уравнение будет обладать корнем.
Вам понадобится
  • - бумага;
  • - ручка.
Инструкция
1
Так появилось понятие комплексных чисел вида z=a+ib, в которых (i^2)=-1, где i – мнимая единица. Числа a и b называются, соответственно, действительной и мнимой частями числа z Rez и Imz.
2
Важную роль в действиях с комплексными числами играют числа комплексно-сопряженные. Сопряженным к комплексному числу z=a+ib называется zs=a-ib, то есть число имеющее противоположный знак перед мнимой единицей. Так, если z=3+2i, то zs=3-2i. Любое действительное число является частным случаем комплексного числа, мнимая часть которого равна нулю. 0+i0 - комплексное число, равное нулю.
3
Комплексные числа можно складывать и перемножать так же, как это делают с алгебраическими выражениями. При этом привычные законы сложения и умножения остаются в силе. Пусть z1=a1+ib1, z2=a2+ib2.Сложение и вычитание.z1+z2=(a1+a2)+i(b1+b2), z1-z2=(a1-a2)+i(b1-b2). Умножение.z1*z2=(a1+ib1)(a2+ib2)=a1a2+ia1b2+ia2b1+(i^2)b1b2=(a1a2-b1b2)+i(a1b2+a2b1).При умножении просто раскрывают скобки и применяют определение i^2=-1. Произведение комплексно-сопряженных чисел является действительным числом: z*zs=(a+ib)(a-ib)==a^2-(i^2)(b^2) = a^2+b^2.
4
Деление.Чтобы привести частное z1/z2=(a1+ib1)/(a2+ib2) к стандартному виду нужно избавиться от мнимой единицы в знаменателе. Для этого проще всего умножить числитель и знаменатель на число, сопряженное знаменателю: ((a1+ib1)(a2-ib2))/((a2+ib2)(a2-ib2))=((a1a2+b1b2)+i(a2b1-a1b2))/(a^2+b^2)=(a1a2+b1b2)/(a^2+b^2)+i(a2b1-a1b2)/(a^2+b^2).Операции сложения и вычитания, а также умножения и деления являются взаимно обратными.
5
Пример. Вычислить (1-3i)(4+i)/(2-2i)=(4-12i+i+3)(2+2i)/((2-2i)(2+2i))=(7-11i)(2+2i)/(4+4)=(14+22)/8+i(-22+14)/8=9/2-iРассмотрите геометрическую интерпретацию комплексных чисел. Для этого на плоскости с прямоугольной декартовой системой координат 0xy каждому комплексному числу z=a+ib необходимо поставить в соответствие точку плоскости с координатами a и b (см. рис. 1). Плоскость, на которой реализовано такое соответствие, называется комплексной плоскостью. На оси 0x расположены действительные числа, поэтому она называется действительной осью. На оси 0y расположены мнимые числа, она носит название мнимой оси.
6
C каждой точкой z комплексной плоскости связан радиус-вектор этой точки. Длина радиус-вектора, изображающего комплексное число z, называется модулемr=|z| комплексного числа; а угол, между положительным направлением действительной оси и направлением вектора 0Z, называется аргументом argz этого комплексного числа.
7
Аргумент комплексного числа считается положительным, если он отсчитывается от положительного направления оси 0x против часовой стрелки, и отрицательным при противоположном направлении. Одному комплексному числу соответствует множество значений аргумента argz+2пk. Из этих значений главными считаются значения argz, лежащие в пределах от –п до п. Сопряженные комплексные числа z и zs имеют равные модули, а их аргументы равны по абсолютной величине, но отличаются знаком. Таким образом, |z|^2=a^2+b^2, |z|=sqrt(a^2+b^2). Так, если z=3-5i, то |z|=sqrt(9+25)=6. Кроме того, так как z*zs=|z|^2=a^2+b^2, то становится возможным вычисление модулей целых комплексных выражений, в которых мнимая единица может появляться многократно.
8
Так как z=(1-3i)(4+i)/(2-2i)=9/2-i, то непосредственное вычисление модуля z даст |z|^2=81/4+1=85/4 и |z|=sqrt(85)/2.Минуя стадию вычисления выражение, учитывая, что zs=(1+3i)(4-i)/(2+2i), можно записать:|z|^2=z*zs==(1-3i)(1+3i)(4+i)(4-i)/((2-2i)(2+2i))=(1+9)(16+1)/(4+4)=85/4 и |z|=sqrt(85)/2.
Видео по теме
Источники:
  • возведение в степень комплексного числа онлайн
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше