Совет 1: Как найти значение выражения

Числовые выражения составляются из чисел, знаков арифметических действий и скобок. Если в таком выражении присутствуют переменные, оно будет называться алгебраическим. Тригонометрическим является выражение, в котором переменная содержится под знаками тригонометрических функций. Задачи на определение значений числового, тригонометрического, алгебраического выражений часто встречаются в школьном курсе математики.
Инструкция
1
Чтобы найти значение числового выражения, определите порядок действий в заданном примере. Для удобства обозначьте его карандашом над соответствующими знаками. Выполните все указанные действия в определенном порядке: действия в скобках, возведение в степень, умножение, деление, сложение, вычитание. Полученное число и будет значением числового выражения.
2
Пример. Найдите значение выражения (34∙10+(489–296)∙8):4–410. Определите порядок действий. Первое действие выполните во внутренних скобках 489–296=193. Затем, умножьте 193∙8=1544 и 34∙10=340. Следующее действие: 340+1544=1884. Далее выполните деление 1884:4=461 и затем вычитание 461–410=60. Вы нашли значение данного выражения.
3
Чтобы найти значение тригонометрического выражения при известном угле α, предварительно упростите выражение. Для этого примените соответствующие тригонометрические формулы. Вычислите заданные значения тригонометрических функций, подставьте их в пример. Выполните действия.
4
Пример. Найдите значение выражения 2sin 30º∙cos 30º∙tg 30º∙ctg 30º. Упростите данное выражение. Для этого воспользуйтесь формулой tg α∙ctg α=1. Получите: 2sin 30º∙cos 30º∙1=2sin 30º∙cos 30º. Известно, что sin 30º=1/2 и cos 30º=√3/2. Следовательно, 2sin 30º∙cos 30º=2∙1/2∙√3/2=√3/2. Вы нашли значение данного выражения.
5
Значение алгебраического выражения зависит от значения переменной. Чтобы найти значение алгебраического выражения при заданных переменных, упростите выражение. Подставьте вместо переменных определенные значения. Выполните необходимые действия. В итоге вы получите число, которое и будет значением алгебраического выражения при заданных переменных.
6
Пример. Найдите значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10. Упростите данное выражение, получите: a–2y. Подставьте соответствующие значения переменных и вычислите: a–2y=21–2∙10=1. Это и есть значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10.

Совет 2: Как упростить выражение в математике

Научиться упрощать выражения в математике просто необходимо, чтобы правильно и быстро решать задачи, различные уравнения. Упрощение выражения подразумевает уменьшение количества действий, что облегчает вычисления и экономит время.
Инструкция
1
Научитесь вычислять степени с натуральными показателями. При умножении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней складываются b^m+b^n=b^(m+n). При делении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней вычитаются, причем из показателя делимого вычитается показатель делителя b^m:b^n=b^(m-n). При возведении степени в степень получается степень числа, основание которого остается прежним, а показатели перемножаются (b^m)^n=b^(mn)При возведении в степень произведения чисел в эту степень возводится каждый множитель.(abc)^m=a^m*b^m*c^m
2
Раскладывайте многочлены на множители, т.е. представляйте их в виде произведения нескольких сомножителей – многочленов и одночленов. Выносите общий множитель за скобки. Выучите основные формулы сокращенного умножения: разность квадратов, квадрат суммы, квадрат разности, сумму кубов, разность кубов, куб суммы и разности. Например, m^8+2*m^4*n^4+n^8=(m^4)^2+2*m^4*n^4+(n^4)^2. Именно эти формулы являются основными в упрощении выражений. Используйте способ выделения полного квадрата в трехчлене вида ax^2+bx+c.
3
Как можно чаще сокращайте дроби. Например, (2*a^2*b)/(a^2*b*c)=2/(a*c). Но помните, что сокращать можно только множители. Если числитель и знаменатель алгебраической дроби умножать на одно и то же число, отличное от нуля, то при этом значение дроби не изменится. Преобразовывать рациональные выражения можно двумя способами: цепочкой и по действиям. Предпочтительней второй способ, т.к. легче проверить результаты промежуточных действий.
4
Нередко в выражениях необходимо извлекать корни. Корни четной степени извлекаются только из неотрицательных выражений или чисел. Корни нечетной степени извлекаются из любых выражений.
Источники:
  • упрощение выражений со степенями

Совет 3: Как найти значение тригонометрических функции

Тригонометрические функции вначале возникли как инструменты абстрактных математических вычислений зависимостей величин острых углов в прямоугольном треугольнике от длин его сторон. Сейчас они очень широко применяются как в научных, так и в технических областях человеческой деятельности. Для практических вычислений тригонометрических функций от заданных аргументов можно использовать разные инструменты - ниже описано несколько наиболее доступных из них.
Инструкция
1
Воспользуйтесь, например, устанавливаемой по умолчанию вместе с операционной системой программой-калькулятором. Она открывается выбором пункта «Калькулятор» в папке «Служебные» из подраздела «Стандартные», помещенного в раздел «Все программы». Этот раздел можно найти, открыв щелчком по кнопке «Пуск» главное меню операционной системы. Если вы используете версию Windows 7, то имеете возможность просто ввести слово «Калькулятор» в поле «Найти программы и файлы» главного меню, а затем щелкнуть по соответствующей ссылке в результатах поиска.
2
Введите значение угла, для которого надо рассчитать тригонометрическую функцию, а потом кликните по соответствующей этой функции кнопке - sin, cos или tan. Если вас интересуют обратные тригонометрические функции (арксинус, арккосинус или арктангенс), то сначала кликните кнопку с надписью Inv - она меняет присвоенные управляющим кнопкам калькулятора функции на противоположные.
3
В более ранних версиях ОС (например, Windows XP) для доступа к тригонометрическим функциям надо раскрыть в меню калькулятора раздел «Вид» и выбрать строку «Инженерный». Кроме того, вместо кнопки Inv в интерфейсе старых версий программы присутствует чекбокс с такой же надписью.
4
Можно обойтись и без калькулятора, если у вас есть доступ в интернет. В сети много сервисов, которые предлагают по-разному организованные вычислители тригонометрических функций. Один их наиболее удобных вариантов встроен в поисковую систему Nigma. Перейдя на ее главную страницу, просто введите в поле поискового запроса интересующее вас значение - например, «арктангенс 30 градусов». После нажатия кнопки «Найти!» поисковик рассчитает и покажет результат вычисления - 0,482347907101025.
Видео по теме

Совет 4: Как найти значение выражений

Некоторые родители, помогая своим детям-младшим школьникам в выполнении домашнего задания по математике, попадают в тупик, забыв правила нахождения значения выражения. Множество вопросов, как правило, возникает в процессе решения заданий из программы 4 класса. Это связано с увеличением числа письменных вычислений, возникновением многозначных чисел, а также действий с ними. Тем не менее, эти правила достаточно просты, и их очень легко вспомнить.
Вам понадобится
  • - учебник;
  • - черновик;
  • - ручка.
Инструкция
1
Перепишите математическое выражение из учебника в черновик. Приучайте ребенка выполнять все вычисления сначала именно в черновике, во избежание грязи в рабочей тетради.
2
Посчитайте количество необходимых действий и подумайте, в каком порядке их следует выполнять. Если вас затрудняет данный вопрос, обратите внимание, что прежде других выполняются действия, заключенные в скобки, затем – деление и умножение; сложение и вычитание производятся в последнюю очередь. Чтобы ребенку было легче запомнить алгоритм выполняемых действий, в выражении над каждым знаком-оператором действий (+,-,*,:) тонким карандашом проставьте цифры, соответствующие порядку выполнения действий.
3
Приступайте к выполнению первого действия, придерживаясь установленного порядка. Считайте в уме, если действия легко выполнить устно. Если же требуются письменные вычисления (в столбик), осуществляйте их запись под выражением, указывая порядковый номер действия.
4
Четко отслеживайте последовательность выполняемых действий, оценивайте, что из чего нужно вычесть, что на что разделить и т.п. Очень часто ответ в выражении получается неверным из-за допущенных ошибок на данном этапе.
5
Следите, чтобы ребенок в процессе вычислений не пользовался калькулятором, так как в таком случае теряется весь смысл изучения математики, который состоит в развитии логики и мышления.
6
Не решайте задания за ребенка - пусть он выполняет его сам, вы лишь должны направлять его действия в нужное русло. Взывайте к его памяти, просите вспомнить о том, как объяснял материал учитель во время урока.
7
Выполнив по порядку все действия и найдя значение выражения, которым является ответ в последнем действии, запишите его в условии выражения после знака «равно».
8
Если в конце учебника приведены ответы на задания, сравните полученный результат с правильным числом. В случае несоответствия данных приступайте к повторным вычислениям.

Совет 5: Что такое числовые выражения

Выражения представляют собой основу математики. Понятие это достаточно широко. Большая часть того, с чем приходится иметь дело в математике – и примеры, и уравнения, и даже дроби – являются выражениями.
Отличительной особенностью выражения является наличие математических действий. Оно обозначаются определенными знаками (умножения, деления, вычитания или сложения). Последовательность выполнения математических действий при необходимости корректируется скобками. Выполнить математические действия – значит найти значение выражения.

Что не является выражением



Не всякую математическую запись можно отнести к числу выражений.

Равенства не являются выражениями. Присутствуют при этом в равенстве математические действия или нет, не имеет значения. Например, a=5 – это равенство, а не выражение, но и 8+6*2=20 тоже нельзя считать выражением, хотя в нем и присутствуют умножение и сложение. Этот пример тоже принадлежит к категории равенств.

Понятия выражения и равенства не являются взаимоисключающими, первое входят в состав второго. Знак равенства соединяет два выражения:
5+7=24:2

Можно это равенство упростить:
5+7=12

Выражение всегда предполагает, что представленные в нем математические действия могут быть выполнены. 9+:-7 – это не выражение, хотя здесь есть знаки математических действий, ведь выполнить эти действия невозможно.

Существуют и такие математические примеры, которые формально являются выражениями, но не имеют смысла. Пример такого выражения:
46:(5-2-3)

Число 46 необходимо разделить на результат действий в скобках, а он равен нулю. На нуль же делить нельзя, такое действие в математике считается запретным.

Числовые и алгебраические выражения



Существует два вида математических выражений.

Если выражение содержит только числа и знаки математических действий, такое выражение называется числовым. Если же в выражении наряду с числами присутствуют переменные, обозначаемые буквами, или чисел нет вообще, выражение состоит только из переменных и знаков математических действий, оно называется алгебраическим.

Принципиальное отличие числового значения от алгебраического состоит в том, что у числового выражения значение только одно. Например, значение числового выражения 56–2*3 всегда будет равно 50, ничего изменить нельзя. У алгебраического же выражения значений может быть много, ведь вместо буквы можно подставить любое число. Так, если в выражении b–7 вместо b подставить 9, значение выражения будет равно 2, а если 200 – оно будет составлять 193.
Источники:
  • Числовые и алгебраические выражения
Обратите внимание
Существуют алгебраические выражения, не имеющие смысла при некоторых значениях переменных. Например, выражение x/(7–a) не имеет смысла, если a=7, т.к. при этом знаменатель дроби обращается в нуль.
Источники:
  • найдите наименьшее значение выражения
Поиск
Совет полезен?
Комментарии 1
Пожаловаться
написалa
461–410=51 а не 60
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше