Совет 1: Как найти длину стороны

Задачи на нахождение длины сторон являются одними из самых распространенных в курсе геометрии. Алгоритм их решения зависит от исходных данных, особенностей рассматриваемой фигуры.
Вам понадобится
  • - тетрадь;
  • - линейка;
  • - карандаш;
  • - ручка;
  • - калькулятор.
Инструкция
1
Простейшие задачи на нахождение длины сторон – это задачи с известным периметром (это сумма длин всех сторон).

Например, периметр параллелограмма АВСD равен 22 см, АВ = 4, найти ВС. Т.к. в параллелограмме противоположные стоны равны, АВ = СD = 4.
2
Решение:

Отсюда ВС = (22 – (АВ *2))/2

ВС = (22 – (4*2))/2

ВС = 7
3
Так же часто встречаются задачи на нахождение длины сторон через площадь.

Например, площадь прямоугольника АВСD равна 24 см, АВ = 3 см, найти ВС. В прямоугольнике противоположные стоны так же равны, поэтому АВ = СD = 3.
4
Решение:

S(прям.) = а*в

S = АВ * ВС

Отсюда ВС = S/АВ

ВС = 8
5
Частным случаем прямоугольника является квадрат. Квадрат – это прямоугольник, стороны которого равны между собой, а углы между ними составляют 90 градусов. Если известна площадь квадрата, то можно найти длину его стороны.

Например, S квадрата АВСD = 64 см^2. Найти АВ.
6
Решение:

S(кв.) = а^2

а = √S

а = √64

а = 8
7
Но если неизвестна ни площадь не периметр, а лишь длина одной из сторон, то решение усложняется. Например, в треугольнике АВС 1/2АС = 4 см, угол САВ = АСВ, ВМ – биссектриса, равная 10 см. Найти АВ.
8
Решение:

Если угол САВ = углу АСВ, то треугольник АВС – равнобедренный. А в равнобедренном треугольнике биссектриса является медианой и высотой. Т.к. ВМ – высота, тот угол ВМА = 90, отсюда треугольник АВМ – прямоугольный.

В прямоугольном треугольнике квадрата гипотенузы равен сумме квадратов катетов (по теореме Пифагора).

Следовательно, АВ ^2 = АМ ^2 + ВМ ^2

АВ ^2 = 16 + 100

АВ = √116

Совет 2: Как найти сторону треугольника, зная сторону и угол

В общем случае знания длины одной стороны и одного угла треугольника недостаточно для определения длины другой стороны. Этих данных может быть достаточно для определения сторон прямоугольного треугольника, а также равнобедренного треугольника. В общем же случае необходимо знать еще один параметр треугольника.
Вам понадобится
  • Стороны треугольника, углы треугольника
Инструкция
1
Для начала можно рассмотреть частные случаи и начать со случая прямоугольного треугольника. Если известно, что треугольник прямоугольный и известен один из его острых углов, то по длине одной из сторон можно найти и лругие стороны треугольника.

Для нахождения длины других сторон необходимо знать, какая сторона треугольника задана - гипотенуза или какой-то из катетов. Гипотенуза лежит против прямого угла, катеты образуют прямой угол.

Рассмотрите прямоугольный треугольник ABC с прямым углом ABC. Пусть задана его гипотенуза AC и, например, острый угол BAC. Тогда катеты треугольника будут равны: AB = AC*cos(BAC) (прилежащий катет к углу BAC), BC = AC*sin(BAC) (катет, противолежащий углу BAC).
2
Пусть теперь задан тот же угол BAC и, например, катет AB. Тогда гипотенуза AC этого прямоугольного треугольника равна: AC = AB/cos(BAC) (соответственно, AC = BC/sin(BAC)). Другой катет BC находится по формуле BC = AB*tg(BAC).
3
Другой частный случай - если треугольник ABC равнобедренный (AB = AC). Пусть задано основание BC. Если задан угол BAC, то боковые стороны AB и AC можно найти по формуле: AB = AC = (BC/2)/sin(BAC/2).

Если задан угол при основании ABC или ACB, то AB = AC = (BC/2)/cos(ABC).
4
Пусть задана одна из боковых сторон AB или AC. Если известен угол BAC, то BC = 2*AB*sin(BAC/2). Если известен угол ABC или угол ACB при основании, то BC = 2*AB*cos(ABC).
5
Теперь можно рассмотреть общий случай треугольника, когда длины одной стороны и одного угла недостаточно для нахождения длины другой стороны.

Пусть в треугольнике ABC задана сторона AB и один из прилежащих к ней углов, например, угол ABC. Тогда, зная еще сторону BC, по теореме косинусов можно найти сторону AC. Она будет равна: AC = sqrt((AB^2)+(BC^2)-2*AB*BC*cos(ABC))
6
Пусть теперь известна сторона AB и противолежащий ей угол ACB. Пусть также известен, например, угол ABC. По теореме синусов AB/sin(ACB) = AC/sin(ABC). Следовательно, AC = AB*sin(ABC)/sin(ACB).
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500