Совет 1: Как найти углы треугольника по длинам его сторон

Есть несколько вариантов нахождения величин всех углов в треугольнике, если известны длины трех его сторон. Один из способов заключается в использовании двух разных формул вычисления площади треугольника. Для упрощения расчетов можно также применить теорему синусов и теорему о сумме углов треугольника.
Инструкция
1
Воспользуйтесь, например, двумя формулами вычисления площади треугольника, в одной из которых задействованы только три его известных стороны (формула Герона), а в другой - две стороны и синус угла между ними. Используя во второй формуле разные пары сторон, вы сможете определить величины каждого из углов треугольника.
2
Решите задачу в общем виде. Формула Герона определяет площадь треугольника, как квадратный корень из произведения полупериметра (половины от суммы всех сторон) на разницы между полупериметром и каждой из сторон. Если заменить периметр суммой сторон, то формулу можно записать в таком виде: S=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c).C другой стороны площадь треугольника можно выразить как половину произведения двух его сторон на синус угла между ними. Например, для сторон a и b с углом γ между ними эту формулу можно записать так: S=a∗b∗sin(γ). Замените левую часть равенства формулой Герона: 0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c)=a∗b∗sin(γ). Выведите из этого равенства формулу для синуса угла γ: sin(γ)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (a∗b∗)
3
Аналогичные формулы для двух других углов:
sin(α)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (b∗c∗)
sin(β)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (a∗c∗)Вместо этих формул можно воспользоваться теоремой синусов, из которой вытекает, что соотношения сторон и синусов противолежащих им углов в треугольнике равны. То есть, вычислив в предыдущем шаге синус одного из углов, можно найти синус другого угла по более простой формуле: sin(α)=sin(γ)∗a/c. А исходя из того, что сумма углов в треугольнике равна 180°, третий угол можно рассчитать еще проще: β=180°-α-γ.
4
Используйте, например, стандартный калькулятор Windows для нахождения величин углов в градусах после того, как по формулам рассчитаете значения синусов этих углов. Чтобы это сделать, применяйте тригонометрическую функцию, обратную синусу - арксинус.

Совет 2: Как найти угол, если известны стороны прямоугольного треугольника

Треугольник, один из углов которого является прямым (равен 90°), называют прямоугольным. Его самая длинная сторона всегда лежит напротив прямого угла и называется гипотенузой, а две другие стороны называют катетами. Если длины этих трех сторон известны, то найти величины всех углов треугольника не составит труда, так как фактически потребуется вычислить всего один из углов. Сделать это можно несколькими способами.
Инструкция
1
Используйте для вычисления величин углов (α, β, γ) определения тригонометрических функций через прямоугольный треугольник. Такое определение, например, для синуса острого угла формулируется как отношение длины противолежащего катета к длине гипотенузы. Значит, если известны длины катетов (A и B) и гипотенузы (C), то найти, например, синус угла α, лежащего напротив катета A можно, разделив длину стороны А на длину стороны C (гипотенузы): sin(α)=A/C. Узнав значение синуса этого угла можно найти его величину в градусах, использовав обратную синусу функцию - арксинус. То есть α=arcsin(sin(α))=arcsin(A/C). Таким же способом можно найти и величину другого острого угла в треугольнике, но в этом нет необходимости. Так как сумма всех углов треугольника всегда составляет 180°, а в прямоугольном треугольнике один из углов равен 90°, то величину третьего угла можно посчитать как разность между 90° и величиной найденного угла: β=180°-90°-α=90°-α.
2
Вместо определения синуса можно использовать определение косинуса острого угла, которое формулируется как отношение длины прилежащего к искомому углу катета к длине гипотенузы: cos(α)=B/C. И здесь задействуйте обратную тригонометрическую функцию (арккосинус), чтобы найти величину угла в градусах: α=arccos(cos(α))=arccos(B/C). После этого, как и в предыдущем шаге, останется найти величину недостающего угла: β=90°-α.
3
Можно воспользоваться аналогичным определением тангенса - он выражается соотношением длины противолежащего искомому углу катета к длине катета прилежащего: tg(α)=A/B. Величину угла в градусах снова определяйте через обратную тригонометрическую функцию - арктангенс: α=arctg(tg(α))=arctg(A/B). Формула величины недостающего угла останется без изменений: β=90°-α.
Видео по теме
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500