Совет 1: Как найти производную

Нахождение производной (дифференцирование) - одна из главных задач математического анализа. Нахождение производной функции имеет множество применений в физике и математике. Рассмотри алгоритм.
Инструкция
1
Упростите функцию. Представьте её в том виде, в котором удобно брать производную.
2
Возьмите производную, используя правила дифференцирования и таблицу производных. В ней находятся производные основных элементарных функций: линейных, степенных, показательных, логарифмических, тригонометрических, обратных тригонометрических. Производные элементарных функций желательно знать наизусть.
3
Производная постоянной (неизменяемой) функции равна нулю. Пример неизменяемой функции: y=5.
4
Правила дифференцирования.
Пусть с - постоянное число, u(x) и v(x) - некоторые дифференцируемые функции.
1) (cu)'=cu';

2) (u+v)'=u'+v';

3) (u-v)'=u'-v';

4) (uv)'=u'v+v'u;

5) (u/v)'=(u'v-v'u)/v^2
В случае сложной функции необходимо последовательно брать производные элементарных функций, входящих в состав сложной функции, и перемножать их. Учитывайте, что в сложной функции одна функция является аргументом другой функции.
Рассмотрим пример.
(cos(5x-2))'=cos'(5x-2)*(5x-2)'=-sin(5x-2)*5=-5sin(5x-2).
В данном примере мы последовательно берем производную функции косинуса с аргументом (5x-2) и производную линейной функции (5x-2) с аргументом x. Перемножаем производные.
5
Упростите полученное выражение.
6
Если необходимо найти производную функции в заданной точке, подставьте значение этой точки в полученное выражение для производной.

Совет 2: Как найти производную корня

В задачах по математическому анализу иногда требуется найти производную корня. В зависимости от условий задачи, производная от функции «корень квадратный» (кубический) находится непосредственно или путем преобразования «корня» в степенную функцию с дробным показателем.
Вам понадобится
  • - карандаш;
  • - бумага.
Инструкция
1
Перед тем как находить производную корня, обратите внимание на остальные функции, присутствующие в решаемом примере. Если в задаче имеется много подкоренных выражений, то воспользуйтесь следующим правилом нахождения производной квадратного корня:

(√х)' = 1 / 2√х.
2
А для нахождения производной кубического корня примените формулу:

(³√х)' = 1 / 3(³√х)²,

где через ³√х обозначен кубический корень из х.
3
Если в примере, предназначенном для дифференцирования, встречается переменная в дробных степенях, то переведите обозначение корня в степенную функцию с соответствующим показателем. Для квадратного корня это будет степень ½, а для кубического корня – ⅓:

√х = х ^ ½,
³√х = x ^ ⅓,

где символ ^ обозначает возведение в степень.
4
Для нахождения производной степенной функции вообще и х^½, x^⅓, в частности, воспользуйтесь следующим правилом:

(х ^ n)' = n * x^(n-1).

Для производной корня из этого соотношения вытекает:

(х^½)' = ½ x ^ (-½) и
(x^⅓)' = ⅓ x ^ (-⅔).
5
Продифференцировав все корни, внимательно посмотрите на остальные части примера. Если в ответе у вас получилось очень громоздкое выражение, то наверняка его можно упростить. Большинство школьных примеров составлено таким образом, чтобы в итоге получилось небольшое число или компактное выражение.
6
Во многих задачах на нахождение производной, корни (квадратные и кубические) встречаются вместе с другими функциями. Чтобы найти производную корня в этом случае, применяйте следующие правила:
• производная константы (постоянного числа, C) равняется нулю: C' = 0;
• постоянный множитель выносится за знак производной: (k*f)' = k * (f)' (f – произвольная функция) ;
• производная суммы нескольких функций равняется сумме производных: (f + g)' = (f)' + (g)';
• производная произведения двух функций равняется… нет, не произведению производных, а следующему выражению: (fg)' = (f)'g + f (g)';
• производная частного также равняется не частному производных, а находится согласно следующего правила: (f/g)' = ((f)'g – f(g)') / g².
Обратите внимание
На этой странице вы сможете вычислять производную функции онлайн с получением подробного решения задачи. Решение производных функции производится с использованием тех правил дифференцирования, которые студенты изучают в курсе математического анализа в институте. Для того, чтобы найти производную функции нужно в поле "Функция" ввести функцию для дифференцирования согласно правил ввода данных.
Совет полезен?
Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю: Математический смысл этого определения понять не очень просто, поскольку в школьном курсе алгебры понятие предела функции либо не изучают совсем, либо изучают очень поверхностно. Но для того, чтобы научиться находить производные различных функций, это и не обязательно.
Источники:
  • производная корень из икс
Видео по теме
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500