Принцип действия

Солнечный свет – это набор электромагнитных волн, которые распространяются от звезды в огромном количестве. К сожалению, фотоэлементы, которые ловят это излучение, недостаточно эффективны, и на данный момент на рынке распространены батареи с КПД от 10 до 20%.

Любая современная гелиоэлектростанция, которую решили устанавливать на загородный дом, работает на принципе P-N перехода. Панель состоит из двух пластин полупроводников, соприкасающихся между собой. Когда на верхнюю часть попадает солнечный свет, он передает электронам, содержащимся в материале, часть своей энергии. После этого они начинают путешествие в другой слой, чтобы уравновесить заряды.

Чтобы создать полноценную панель, два полупроводника соединяют между собой, нанося на верхний тонкие полоски металла, которые облегчают прохождение электронов к аккумулятору, а через него происходит электроснабжение приборов. Сбрасывая напряжение в накопители, частицы перемещаются на металлическую пластину основания, а после этого в нижний, темный слой, откуда проталкиваются опять к верхнему. Получается замкнутый цикл, движущей силой которого служит солнечный свет.

Виды пластин

Существует несколько направлений солнечных панелей, которые можно использовать в частном доме. По материалам самыми распространенными являются кремневые пластины и полимерные пленки. В каждом способе присутствуют как свои преимущества, так и недостатки, поэтому необходимо рассмотреть каждый вид по отдельности.

Пластины, содержащие кремень, работают наиболее эффективно, в сравнении с другими известными человечеству фотоэлементами. При попадании солнечных лучей на кремень, энергия, заключенная в них, смещает электроны с орбиты атомов, производя постоянный ток. Частицы, двигаясь к накопителю, сбрасывают заряд, возвращаются к атомам, где снова подвергаются бомбардировке энергией. Но производство таких панелей довольно затратное как по средствам, так и по выбросам в окружающую среду. Поэтому сейчас в лабораториях идет поиск более экологичных и эффективных способов извлечения энергии из света.

Характеристика кремневых панелей:

  1. Монокристаллические батареи, имеют самый высокий КПД, которое для распространенных моделей составляет 20–22%. Все фотоэлементы, из которых состоит панель, направлены в одну сторону, что требует установки ее под определенным углом к солнечным лучам. При смещении угла количество вырабатываемого тока значительно снижается. Сумерки, затененное место и неправильно падающий свет слабо улавливается ячейками, из-за чего батарея не вырабатывает энергию. Поэтому такой модуль рационально устанавливать при большом количестве прямых солнечных лучей и ясных дней.
  2. Поликристаллические батареи. Их КПД в пределах 17–18% из-за того, что часть кремниевых пластинок направлены в разные стороны. Благодаря этому увеличивается время работы, и можно использовать в облачную погоду или затемненном месте.
  3. Аморфные панели. КПД до 10%, что обусловлено слишком тонким слоем кремния, напыляемого на подложку из металла или пластика. Постепенно эффективность снижается, и через 3–4 года батарея может прекратить работу. Но благодаря случайному направлению кремниевых чешуек, улавливается весь возможный свет.
  4. Гибридные панели состоят из монокристаллических ячеек, вместе с которыми используют и аморфное нанесение. Это увеличивает захват световых лучей и время работы, что повышает КПД.

Отдельно выделяются полимерные солнечные батареи, которые производятся с помощью печати нескольких слоев на пластиковой подложке. Из-за того, что фоточувствительный материал не требует жесткого основания, чаще всего такие панели выпускают гибкими. Такая особенность дает возможность использовать их на любой поверхности. КПД достигает 6%, но производство достаточно дешевое из-за отказа от дорогостоящего кремния и потерь при транспортировке. Но к сожалению, технология довольно новая, и имеет меньшее распространение.

Энергопотребление дома

Если в доме проживают постоянно и довольно давно, то количество потребляемой энергии можно посмотреть в квитанциях. Но все равно это будет только общей картиной, не предоставляющей возможности понять, как потребление меняется в зависимости от дня недели и времени суток. Для того чтобы это узнать потребуется дополнительно рассчитать, какая часть из общей массы электричества идет на поддержания работы приборов в фоновом режиме, а что используется осознано.

Порядок определения потребления энергии:

  1. Для начала следует обойти весь дом, и записать все оборудование, которое потребляет энергию беспрерывно. К таким относятся холодильники, морозильные камеры, бойлеры, теплые полы, телефоны и прочее. После этого следует свериться с инструкцией, чтобы узнать сколько КВт/ч потребляют те или иные устройства. На данном этапе часто происходит отсечение не используемой техники, что сокращает расход средств.
  2. Когда стал известен постоянный расход энергии, начинают рассчитывать переменный. Малый пиковый период приходится на утренние часы, когда все собираются на работу или в школу. А большой пик необходимости в электричестве наступает после 17–18 часов, когда возвращаются с работы. Но все это зависит от привычек каждой семьи, и необходимо провести исследование, когда именно и как долго используются осветительные приборы, а также другая техника. Самыми большими потребителями являются аппараты для приготовления пищи, телевизоры и стационарные компьютеры, поэтому особенно важно точно посчитать время их работы.
  3. После того, как стало известно потребление бытовых приборов, начинают следить за частотой использования осветительных приборов. Важно понять, что в зимний период светает позже, а темнеет раньше. В Московской области световой день, при котором на улице хорошо видны предметы без дополнительного освещения, всего 8 часов. Время нормальной освещенности помещения с помощью солнечных лучей еще меньше, поэтому на лампы приходится значительная нагрузка, и их обязательно надо учитывать.

Когда все значения зафиксированы, конечное значение обязательно умножают на 10–20%, чтобы создать резерв для непредвиденных ситуаций. Это значение и нужно использовать для расчета дополнительного оборудования и площади солнечных панелей.

Схема расчета необходимой мощности

В зависимости от количества солнечных дней и освещенности участка, выбирают тип панели. Для того чтобы полностью обеспечить частный дом, понадобится энергетический показатель потребления дома. Чтобы облегчить расчет необходимо сделать следующее:

  • вычесть из общей суммы работу приборов, происходящую в солнечные часы;
  • оставшееся значение разделить на солнечный период.

Именно столько электричества в час должно поступать и сохраняться в аккумуляторе для нормального функционирования дома. Но прежде чем покупать панели, необходимо узнать уровень инсоляции (количество лучей попадающих на поверхность) в данном регионе. Если установка будет работать в доме с постоянным проживанием, нужно смотреть на самое минимальное значение за год. А если это дача для летнего проживания, выбирают минимальное значение для теплого времени года.

Общую сумму разделяют на уровень инсоляции и производительность выбранной панели. В результате получают минимальное количество штук, которые необходимы для функционирования дома. При этом важно чтобы десятые доли округлялись в большую сторону.

Дополнительное оборудование

Сами панели нельзя подключить к электросети дома. Для этого понадобится еще несколько устройств.

Комплектующие:

  1. Контроллер, предотвращающий перепады тока. Панель можно подключать только через него.
  2. Аккумулятор необходимой емкости. Накапливает постоянный ток, поступающий с панели.
  3. Инвертор - узел, преобразующий постоянный в переменный ток.

Все эти механизмы должны подходить друг к другу. Поэтому необходим подбор совместимых устройств, выдерживающих определенную мощность.

Электрификация дома с помощью солнечных панелей становится все популярнее, и многие задумываются о том, чтобы сэкономить на этом. К сожалению, пока что производство такой энергии стоит дороже, чем от традиционной электростанции. Но по прогнозам в течение 10 лет ситуация изменится на противоположную, поэтому вложение в собственные панели быстро окупится.