Совет 1: Как найти заряд конденсатора

В технике и задачах по физике иногда требуется найти заряд конденсатора. Непосредственное измерение заряда конденсатора – задача довольно трудоемкая. Поэтому на практике используются более доступные способы нахождения заряда конденсатора.
Как найти заряд конденсатора
Вам понадобится
  • конденсатор, вольтметр
Инструкция
1
Чтобы найти заряд конденсатора, подключенного к источнику постоянного напряжения, умножьте емкость конденсатора на величину напряжения, т.е. воспользуйтесь формулой:
Q=UC, где:
Q – заряд конденсатора, в кулонах,
U – напряжение источника напряжения, в вольтах,
С – емкость конденсатора, в фарадах.
Учтите, что вышеприведенная формула определяет величину заряда полностью заряженного конденсатора. Но так как зарядка конденсатора происходит достаточно быстро, то на практике пользуются именно этой закономерностью.
2
Напряжение источника питания можно измерить вольтметром. Для этого переключите его в режим измерения постоянного напряжения и подключите клеммы прибора к источнику напряжения. Запишите показания прибора в вольтах.
3
Узнать емкость конденсатора можно прочитав маркировку на его корпусе. Учтите, что единица емкости фарада (Ф)– очень большая, поэтому на практике используется редко. Для обозначения емкости конденсаторов используются более мелкие единицы. Это микрофарада (мкФ), равная одной миллионной фарады и пикофарада (пФ), равная одной миллионной микрофарады.
1 мкФ=10-6 Ф, 1 пФ = 10-12 Ф.
Иногда используется и промежуточная единица емкости – нанофарада, равная одной миллиардной части фарады.
1 нФ = 10-9 Ф.
4
Если конденсатор малогабаритный, то его емкость указывается с помощью условных обозначений.
Внимательно прочтите маркировку конденсатора, обратив внимание на его цвет.Если на конденсаторе указаны всего две цифры, то это его емкость в пикофарадах.
Так, например, надпись «60» будет означать емкость 60 пФ.
5
Если на конденсаторе указана одна прописная латинская буква или цифра, то найдите в нижеприведенной таблице соответствующее числовое значениеA 1.0 I 1.8 R 3.3 Y 5.6
B 1.1 J 2.0 S 3.6 Z 6.2
C 1.2 K 2.2 T 3.9 3 6.8
D 1.3 L 2.4 V 4.3 4 7.5
E 1.5 N 2.7 W 4.7 7 8.2
H 1.6 O 3.0 X 5.1 9 9.1и, в зависимости от цвета конденсатора, умножьте его на соответствующий множитель:Оранжевый - 1
Черный - 10
Зеленый - 100
Голубой - 1.000
Фиолетовый - 10.000
Красный - 100.000Например:
H на оранжевом конденсаторе - 1,6 * 1 = 1,6 пФ
E на зеленом конденсаторе - 1,5 * 100 = 150 пФ
9 на голубом конденсаторе - 9,1 * 1000 = 9100 пФ
6
Если на конденсаторе обнаружится надпись, состоящая из одной заглавной латинской буквы и стоящей рядом цифры, то найдите в нижеприведенной таблице соответствующее (этой букве) числовое значение и умножьте его на 10 в той степени, которая указана после буквы.A 10 G 18 N 33 U 56
B 11 H 20 P 36 V 62
C 12 J 22 Q 39 W 68
D 13 K 24 R 43 X 75
E 15 L 27 S 47 Y 82
F 16 M 30 T 51 Z 91Например:
B1 - 11 * (10) = 110 пФ
F3 - 16 * (10*10*10) = 16 000 пФ=16нФ=0,016 мкФ

Совет 2: Как найти заряд

В задачах по физике иногда нужно найти заряд какого-либо тела на основе его взаимодействия с электрическим полем или другими телами. В большинстве случаев размерами самого тела пренебрегают, чтобы не рассчитывать распределение элементарных зарядов по его массе или поверхности.
Нахождение величины элементарного заряда
Инструкция
1
Например, как найти заряд пылинки массой 1 мг, которая влетела в однородное электрическое поле напряженностью 100 кВ/м, пролетела 4 см и при этом ее скорость увеличилась с 1 м/с до 3 м/с?
2
Сделайте краткую запись условий поставленной задачи: m=1 мг,V1=1 м/с, V2=3 м/с, S=4см, E=кВ/м, q-?
3
Приравняйте силу, сообщающую пылинке ускорение, к силе, действующей на пылинку со стороны однородного электрического поля. Из этого равенства алгебраически выразите заряд пылинки: получается, что произведение массы пылинки и ускорения пылинки равно произведению напряженности электрического поля и заряда; в итоге заряд пылинки находится как отношение произведения массы пылинки и ускорения к величине напряженности электрического поля.
4
Запишите кинематическое уравнение для определения ускорения пылинки: ускорение определяется как отношение разности квадратов конечной и начальной скорости к удвоенному значению пройденного пылинкой пути.
5
Подставьте это уравнение в выражение для определения заряда пылинки. В окончательном варианте заряд пылинки равен отношению произведения массы пылинки и разности квадратов конечной и начальной скоростей к удвоенному произведению пройденного пути и напряженности электрического поля.
6
Проверьте размерность искомой величины: для этого в конечную формулу для определения заряда вместо букв, обозначающих физические величины, подставьте единицы физических величин, выраженные в системе СИ: единица измерения заряда определится как отношение произведения кг•(м/с)2 к произведению м•В/м; сократите в этой дроби одинаковые единицы измерения; используйте определение физических величин 1 Ньютон и 1 Джоуль и замените ими определенные комбинации физических величин.
7
Подставив числовые значения, вычислите заряд пылинки. Получится q=10 нКл
Видео по теме
Полезный совет
Пояснения: согласно второму закону Ньютона ускорение пылинке сообщает равнодействующая всех сил, действующих на пылинку; так как о сопротивлении движению пылинки не упомянуто, на нее действует единственная сила – со стороны электрического поля.

1 Ньютон: [1Н] = [кг∙м/с2]; [Дж] =[Н∙м]; [Дж/В]=[Кл]

При подстановке числовых значений переведите значения всех физических величин в систему СИ; при переводе некоторых величин для исключения очень громоздких чисел или неудобных десятичных дробей используйте в качестве множителя число 10 в положительной или отрицательной степени.

Совет 3: Как найти величину h по физике

Значение постоянной Планка, обозначаемой буквой h, определено экспериментально в лабораторных условиях с точностью до десяти знаков после запятой. Поставить опыт по ее определению можно и в физическом кабинете, но точность будет значительно меньше.
Как найти величину h по физике
Вам понадобится
  • - фотоэлемент с внешним фотоэффектом;
  • - источник света с монохроматором;
  • - плавно регулируемый источник питания на 12 В;
  • - вольтметр;
  • - микроамперметр;
  • - лампочка на 12 В, 0,1 А;
  • - калькулятор, работающий с числами, представленными в экспоненциальной форме.
Инструкция
1
Используйте для опыта фотоэлемент с внешним фотоэффектом. Элемент с внутренним фотоэффектом (т.е., не вакуумный, а полупроводниковый) не подойдет. Испытайте его на пригодность для проведения опыта, для чего подключите к микроамперметру непосредственно, соблюдая полярность. Направьте на него свет - стрелка должна отклониться. Если этого не произойдет, используйте фотоэлемент другого типа.
2
Не меняя полярности подключения ни фотоэлемента, ни микроамперметра, разорвите цепь и включите в ее разрыв регулируемый источник питания, выходное напряжение которого можно плавно менять от 0 до 12 В (с двумя ручками для грубой и точной регулировки). Внимание: включать этот источник следует не в прямой, а в обратной полярности, чтобы он своим напряжением не увеличивал, а уменьшал ток через элемент. Параллельно ему подключите вольтметр - на этот раз в полярности, соответствующей обозначениям на источнике. Этого можно не делать, если в блоке имеется встроенный вольтметр. Также подключите параллельно выходу нагрузку, например, в виде лампочки на 12 В, 0,1 А, на случай, если внутреннее сопротивление источника велико. Свет лампочки попадать на фотоэлемент не должен.
3
Установите напряжение источника на нуль. Направьте в фотоэлемент поток света из источника с монохроматором, выставив длину волны порядка 650 нанометров. Плавно увеличивая напряжение источника питания, добейтесь, чтобы ток через микроамперметр стал равным нулю. Оставьте регулятор в этом положении. Запишите показания вольтметра и шкалы монохроматора.
4
Выставьте на монохроматоре длину волны порядка 450 нанометров. Немного увеличьте выходное напряжение источника питания, чтобы ток через фотоэлемент снова стал равным нулю. Запишите новые показания вольтметра и шкалы монохроматора.
5
Вычислите частоту света в герцах для первого и второго опытов. Для этого поделите скорость света в вакууме, равную 299792458 м/с, на длину волны, предварительно переведенную из нанометров в метры. Для простоты считайте коэффициент преломления воздуха равным 1.
6
Вычтите большее напряжение из меньшего. Результат умножьте на заряд электрона, равный 1,602176565(35)·10^(−19) кулона (Кл), а затем поделите на результат вычитания большей частоты из меньшей. Получится постоянная Планка, выраженная в джоулях, умноженных на секунду (Дж·с). Если она будет близка к официальному значению, равному 6,62606957(29)·10^(-34) Дж·с, опыт можно считать поставленным правильно.
Видео по теме
Обратите внимание
Соблюдайте осторожность при работе с электрическим оборудованием.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500