Совет 1: Как найти площадь прямоугольника, если известна одна сторона и периметр в 2017 году

Площадь прямоугольника находится по формуле S = ab, где a и b – смежные стороны данной фигуры. Поэтому если известна длина только одной из этих сторон, то первое, что вам нужно сделать, – вычислить длину второй.
Инструкция
1
Например, вам известно, что длина одной из сторон (а) равна 7 см, а периметр прямоугольника (P) равен 20 см. Так как периметр любой фигуры равен сумме длин ее сторон, а у прямоугольника противоположные стороны всегда равны, то формула его периметра будет выглядеть следующим образом: P = 2 x (a + b), или P = 2a + 2b. Из этой формулы следует, что найти длину второй стороны (b) можно с помощью следующей несложной операции: b = (P – 2a) : 2. Так, в нашем случае сторона b будет равна (20 – 2 х 7) : 2 = 3 см.
2
Теперь, зная длины обеих смежных сторон (a и b), вы легко сможете подставить их в формулу площади S = ab. В данном случае площадь прямоугольника будет равна 7х3 = 21. Обратите внимание на то, что единицами измерения здесь будут уже не сантиметры, а сантиметры квадратные, так как при умножении длин двух сторон единицы их измерения (сантиметры) вы тоже умножали друг на друга.

Совет 2: Как находить площадь прямоугольника

Прямоугольник - плоская фигура, состоящая из четырех сторон и четырех прямых углов. Из всех фигур площадь прямоугольника приходится вычислять чаще других. Это и площадь квартиры, и площадь садового участка, и площадь поверхности стола или полки. Например, чтобы просто оклеить комнату обоями, вычисляют площадь ее прямоугольных стен.
Инструкция
1
Самый простой способ найти площадь прямоугольника - это перемножить длину прямоугольника на ширину. Таким образом, если длина прямоугольника равна a, а ширина - b, то площадь S = ab.
Как находить <strong>площадь</strong> <b>прямоугольника</b>
2
Несложно найти и площадь прямоугольника, зная длину его диагонали и угол между диагоналями. Пусть длина диагонали равна d, а угол между ними - φ. Тогда площадь прямоугольника S = ½d²sinφ.
Как находить <strong>площадь</strong> <b>прямоугольника</b>
3
Кстати, из площади прямоугольника можно легко вычислить площадь прямоугольного треугольника. Достаточно достроить прямоугольный треугольник до прямоугольника так, чтобы гипотенуза стала диагональю прямоугольника. Тогда будет очевидно, что площадь такого прямоугольника равна произведению катетов треугольника, а площадь самого треугольника, соответственно, равна половине произведения катетов.
Как находить <strong>площадь</strong> <b>прямоугольника</b>
Видео по теме

Совет 3: Как найти стороны прямоугольника

Частный случай параллелограмма - прямоугольник – известен только в геометрии Евклида. У прямоугольника равны все углы, и каждый из них по отдельности составляет 90 градусов. Исходя из частных свойств прямоугольника, а также из свойств параллелограмма о параллельности противолежащих сторон можно найти стороны фигуры по заданным диагоналям и углу от их пересечения. Вычисление сторон прямоугольника основывается на дополнительных построениях и применении свойств получаемых фигур.
Инструкция
1
Постройте прямоугольник EFGH. Запишите известные данные: диагональ прямоугольника EG и угол α, полученный от пересечения двух равных диагоналей FH и EG. Постройте на рисунке диагонали и отметьте между ними угол α.
Как найти <b>стороны</b> <strong>прямоугольника</strong>
2
Буквой А отметьте точку пересечения диагоналей. Рассмотрите образованный построениями треугольник EFА. Согласно свойству прямоугольника его диагонали равны и делятся пополам точкой пересечения А. Вычислите значения FА и EА. Так как треугольник EFА является равнобедренным и его стороны EА и FА равны между собой и соответственно равны половине диагонали EG.
3
Далее вычислите первую сторону EF прямоугольника. Данная сторона является третьей неизвестной стороной рассматриваемого треугольника EFА. Согласно теореме косинусов по соответствующей формуле найдите сторону EF. Для этого подставьте в формулу косинусов полученные ранее значения сторон FА равна EА и косинус известного угла между ними α. Вычислите и запишите полученное значение EF.
Как найти <b>стороны</b> <strong>прямоугольника</strong>
4
Найдите вторую сторону прямоугольника FG. Для этого рассмотрите другой треугольник EFG. Он является прямоугольным, где известны гипотенуза EG и катет EF. Согласно теореме Пифагора найдите второй катет FG по соответствующей формуле.
Как найти <b>стороны</b> <strong>прямоугольника</strong>
5
В соответствии со свойствами прямоугольника его противолежащие ребра равны. Таким образом сторона GH равна найденной стороне EF, а HЕ = FG. Запишите в ответ все вычисленные стороны прямоугольника.

Совет 4: Как найти площадь прямоугольника

Прямоугольник относится к простейшим плоским геометрическим фигурам и является одним из частных случаев параллелограмма. Отличительная черта такого параллелограмма - прямые углы во всех четырех вершинах. Ограниченную сторонами прямоугольника площадь можно вычислить несколькими способами, используя размеры его сторон, диагонали и углы между ними, радиус вписанной окружности и т.д.
Инструкция
1
Если известны длины сторон прямоугольника (Н и W), то просто перемножьте его высоту на ширину и результатом будет искомая площадь: S=Н*W.
2
Если известна величина угла (α), который составляет диагональ прямоугольника с одной из его сторон, а также длина (С) этой диагонали, то для вычисления площади можно задействовать определения тригонометрических функций в прямоугольном треугольнике. Прямоугольный треугольник здесь образуют две стороны четырехугольника и его диагональ. Из определения косинуса вытекает, что длина одной из сторон будет равна произведению длины диагонали на косинус угла, величина которого известна. Из определения синуса можно вывести формулу длины другой стороны - она равна произведению длины диагонали на синус все того же угла. Подставьте эти тождества в формулу из предыдущего шага, и получится, что для нахождения площади надо перемножить синус и косинус известного угла, а также квадрат длины диагонали прямоугольника: S=sin(α)*cos(α)*С².
3
Если кроме длины диагонали (С) прямоугольника известна величина угла (β), который образуют диагонали, то для вычисления площади фигуры можно тоже задействовать одну из тригонометрических функций - синус. Возведите в квадрат длину диагонали и умножьте полученный результат на половину синуса известного угла: S=С²*sin(β)/2.
4
Если известен радиус (r) вписанной в прямоугольник окружности, то для вычисления площади возведите эту величину во вторую степень и увеличьте результат в четыре раза: S=4*r². Четырехугольник, в который можно вписать окружность, будет являться квадратом, а длина его стороны равна диаметру вписанной окружности, то есть удвоенному радиусу. Формула получена подстановкой длин сторон, выраженных через радиус в тождество из первого шага.
5
Если известны длины периметра (P) и одной из сторон (A) прямоугольника, то для нахождения площади внутри этого периметра вычислите половину произведения длины стороны на разницу между длиной периметра и двумя длинами этой стороны: S=A*(P-2*A)/2.
Видео по теме

Совет 5: Как найти площадь и периметр

С задачей найти периметр или площадь многоугольника сталкиваются не только ученики на уроках геометрии. Порой ее случается решать и взрослому человеку. Приходилось ли вам рассчитывать необходимое количество обоев для комнаты? Или, может быть, вы измеряли протяженность дачного участка, чтобы огородить его забором? Так знания основ геометрии иногда незаменимы для осуществления важных проектов.
Вам понадобится
  • - карандаш;
  • - линейка.
Инструкция
1
Периметр многоугольника равен сумме длин всех его сторон. Измерьте линейкой длины сторон многоугольника. Сложите между собой полученные значения. Это и будет периметр многоугольника. Например, для треугольника со сторонами 7, 3 и 5 см, периметр будет равен 7+3+5=15 см.
2
Площадь прямоугольника равна произведению его сторон. Измерьте линейкой длину и ширину прямоугольника. Умножьте длину на ширину. Вы получите площадь прямоугольника. Например, для прямоугольника со сторонами 5 и 6 см, площадь равна 5∙6=30 см².
3
Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне. Проведите высоту параллелограмма. Измерьте линейкой высоту и длину стороны, к которой эта высота проведена. Умножьте полученные значения. Вы получите площадь параллелограмма. Например, для параллелограмма с длиной стороны 12 см и высотой, опущенной на эту сторону, длиной 4 см, площадь равна 12∙4=48 см².
4
Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне. Проведите высоту треугольника. Измерьте линейкой высоту и длину стороны, к которой проведена высота. Умножьте полученные значения. Разделите произведение на 2. Вы получите площадь треугольника. Например, для треугольника со стороной 10 см и высотой, проведенной к этой стороне, длиной 6 см, площадь равна (10+6):2=8 см².
5
Площадь трапеции равна произведению полусуммы ее оснований на высоту. Проведите высоту трапеции, измерьте ее. Измерьте длины оснований трапеции. Сложите длины оснований. Полученную сумму разделите на 2. Результат умножьте на длину высоты. Вы получите площадь трапеции. Например, для трапеции с основаниями 12 и 16 см и высотой 7 см, площадь равна (12+16):2∙7=98 см².
6
Чтобы найти площадь многоугольника с 5-ю и более сторонами, разбейте его на несколько треугольников, найдите площадь каждого и сложите полученные значения вместе. Вы получите площадь данного многоугольника.
Видео по теме
Источники:
  • площади многоугольников в 2017
  • что такое площадь и как её найти в 2017
Источники:
  • как находится периметр прямоугольника
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500