Совет 1: Как решать матрицу методом гаусса

Решение матрицы в классическом варианте находится с помощью метода Гаусса. Данный метод основан на последовательном исключении неизвестных переменных. Решение выполняется для расширенной матрицы, то есть с включенным столбцом свободных членов. При этом коэффициенты, составляющие матрицу, в результате проведенных преобразований образуют ступенчатую или треугольную матрицу. Относительно главной диагонали все коэффициенты матрицы, кроме свободных членов, должны быть приведены к нулю.
Как решать матрицу методом гаусса
Инструкция
1
Определите совместность системы уравнений. Для этого посчитайте ранг основной матрицы А, то есть без столбца свободных членов. Затем добавьте столбец свободных членов и вычислите ранг получившейся расширенной матрицы В. Ранг должен быть отличным от нуля, тогда система имеет решение. При равных значениях рангов существует единственное решение данной матрицы.
Как решать <b>матрицу</b> <em>методом</em> гаусса
2
Приведите расширенную матрицу к виду, когда по главной диагонали располагаются единицы, а ниже нее все элементы матрицы равны нулю. Для этого первую строку матрицы разделите на ее первый элемент так, чтобы первый элемент главной диагонали стал равен единице.
Как решать <b>матрицу</b> <em>методом</em> гаусса
3
Отнимите первую строку от всех нижних строк так, чтобы в перовом столбце все нижние элементы обратились в ноль. Для этого помножьте сначала первую строку на первый элемент второй строки и отнимите строки. Затем аналогично помножьте первую строку на первый элемент третьей строки и отнимите строки. И так продолжайте со всеми строками матрицы.
Как решать <b>матрицу</b> <em>методом</em> гаусса
4
Разделите вторую строку на коэффициент во втором столбце так, чтобы следующий элемент главной диагонали на второй строке и во втором столбце стал равен единице.
Как решать <b>матрицу</b> <em>методом</em> гаусса
5
Отнимите вторую строку от всех нижних строк таким же образом, как описано выше. Все нижестоящие относительно второй строки элементы должны обратиться в ноль.
Как решать <b>матрицу</b> <em>методом</em> гаусса
6
Аналогично проведите образование следующей единички на главной диагонали в третьей и последующих строках и обнуление нижестоящих коэффициентов матрицы.
Как решать <b>матрицу</b> <em>методом</em> гаусса
7
Затем приведите полученную треугольную матрицу к виду, когда элементы над главной диагональю также представляют собой нули. Для этого отнимите последнюю строку матрицы из всех вышестоящих строк. Домножайте на соответствующий коэффициент и вычитайте стоки так, чтобы обратились в ноль элементы столбца, где в текущей строке имеется единичка.
Как решать <b>матрицу</b> <em>методом</em> гаусса
8
Проведите подобное вычитание всех строк в порядке снизу вверх, пока не обнулятся все элементы выше главной диагонали.
9
Оставшиеся элементы в столбце свободных членов и являются решением заданной матрицы. Запишите полученные значения.
Как решать <b>матрицу</b> <em>методом</em> гаусса
Ваши деньги должны работать на вас!
вклад на выгодных условиях
Стабильный доход и уверенность в завтрашнем дне - это то, что вы получите, сделав вклад на самых выгодных для себя условиях.
Возможность вернуть до 260 000 рублей
Если вы решили взять ипотеку
Каждый россиянин имеет право вернуть часть уплаченных налогов за покупку жилья.
Карта с большими бонусами
Дебетовая карта
Возвращается до 10% от стоимости покупок. Выгодна при крупных тратах.
Настроить автоплатежи просто
настройка автоплатежей за пару минут
В мобильном приложении Сбербанка все ваши платежи будут происходить в срок и без вашего участия.
Видео по теме
Источники:
  • матрицы метод гаусса

Совет 2: Как решать матрицу по Гауссу

Метод Гаусса является одним из основных принципов решения системы линейных уравнений. Его преимущество заключается в том, что оно не требует квадратичности исходной матрицы или же предварительного расчете ее определителя.
алгоритм решения методом Гаусса
Вам понадобится
  • Учебник по высшей математике.
Инструкция
1
Итак у вас есть система линейных алгебраических уравнений. Данный метод состоит из двух основных ходов - прямого и обратного.
Как решать <strong>матрицу</strong> по <b>Гауссу</b>
2
Прямой ход:Запишите систему в матричном виде.Составьте расширенную матрицу и приведите ее к ступенчатому виду с помощью элементарных преобразований строк. Стоит напомнить, что матрица имеет ступенчатый вид, если выполняются следующие два условия: Если какая-то строка матрицы нулевая, то все последующие строки тоже являются нулевыми; Опорный элемент каждой последующий строки находится правее, чем в предыдущей.Элементарным преобразованием строк называют действия следующих трех типов:
1) перестановка местами любых двух строк матрицы.
2) замена любой строки суммой этой строки с любой другой, предварительно умноженной на некоторое число.
3) умножение любой строки на отличное от нуля число.Определите ранг расширенной матрицы и сделайте вывод о совместности системы. Если ранг матрица А не совпадает с рангом расширенной матрицы, то система не совместна и соответственно не имеет решения. Если же ранги не совпадают, то система совместна, и продолжайте поиск решений.
Матричный вид системы
3
Обратный ход:Объявите базисными неизвестными те, номера которых совпадут с номерами базисных столбцов матрицы А (ее ступенчатого вида), а остальные переменные будете считать свободными. Число свободных неизвестных вычисляем по формуле k=n-r(A), где n-число неизвестных, r(A)-ранг матрица А.Далее вернитесь к ступенчатой матрице. Приведите ее к виду Гаусса. Напомним, что ступенчатая матрица имеет вид Гаусса, если все опорные элементы ее равны единице, а над опорными элементами одни нули. Запишите систему алгебраических уравнений, которая соответствует матрице вида Гаусса, обозначив свободные неизвестные как C1,...,Ck.На следующем шаге выразите из полученной системы базисные неизвестные через свободные.
4
Запишите ответ в векторном или покоординатном виде.
Видео по теме
Полезный совет
Существует множество программ для решения данной задачи. Если интересует именно ответ, а не механизм метода, то вполне можно воспользоваться ими.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500