Совет 1: Как найти синус внешнего угла

По определению любой угол составляют два несовпадающих луча, которые выходят из единственной общей точки - вершины. Если один из лучей продолжить за вершину, это продолжение вместе со вторым лучом образует еще один угол - он называется смежным. Смежный угол в вершине любого выпуклого многоугольника называют внешним, так как он лежит вне участка поверхности, ограниченного сторонами этой фигуры.
Инструкция
1
Если вам известно значение синуса внутреннего угла (α₀) геометрической фигуры, вычислять что-либо нет необходимости - синус соответствующего ему внешнего угла (α₁) будет иметь точно такое же значение: sin(α₁) = sin(α₀). Это определяется свойствами тригонометрической функции sin(α₀) = sin(180°-α₀). Если бы требовалось узнать, например, значение косинуса или тангенса внешнего угла, эту величину нужно было бы брать с противоположным знаком.
2
Существует теорема о том, что в треугольнике сумма величин двух любых внутренних углов равна величине внешнего угла третьей вершины. Используйте ее в том случае, если величина внутреннего угла, соответствующего рассматриваемому внешнему (α₁), неизвестна, а углы (β₀ и γ₀) в двух других вершинах приведены в условиях. Найдите синус от суммы известных углов: sin(α₁) = sin(β₀+γ₀).
3
Задача с теми же исходными условиями, что и в предыдущем шаге, имеет и другое решение. Оно вытекает из другой теоремы - о сумме внутренних углов треугольника. Так как эта сумма, согласно теореме, должна быть равна 180°, величину неизвестного внутреннего угла можно выразить через два известных (β₀ и γ₀) - она будет равна 180°-β₀-γ₀. Это означает, что вы можете использовать формулу из первого шага, заменив в нем величину внутреннего угла этим выражением: sin(α₁) = sin(180°-β₀-γ₀).
4
В правильном многоугольнике величина внешнего угла при любой вершине равна величине центрального угла, а значит, может быть рассчитана по той же формуле, что и он. Поэтому, если в условиях задачи дано число сторон (n) многоугольника, при вычислении синуса любого внешнего угла (α₁) исходите из того, что его величина равна полному обороту, поделенному на число сторон. Полный оборот в радианах выражается удвоенным числом Пи, поэтому формула должна иметь такой вид: sin(α₁) = sin(2*π/n). При расчетах в градусах удвоенное Пи замените на 360°: sin(α₁) = sin(360°/n).

Совет 2: Как вычислять синус угла

Когда приходится иметь дело с решением прикладных задач, включающих тригонометрические функции, наиболее часто требуется вычислить значения синуса или косинуса заданного угла.
Инструкция
1
Первый вариант - классический, с использованием бумаги, транспортира и карандаша (или ручки).По определению синус угла равен соотношению противолежащего катета к гипотенузе прямоугольного треугольника. То есть, чтобы вычислить значение, вам надо при помощи транспортира построить прямоугольный треугольник, один из углов которого равен тому, синус которого вас интересует. Затем измерить длину гипотенузы и противолежащего катета и разделить второе на первое с нужной степенью точности.
2
Второй вариант - школьный. Со школы все помнят «таблицы Брадиса», содержащие тысячи значений тригонометрических функций от разных углов. Можно поискать как бумажное издание, так и его электронный аналог в формате pdf - они есть в сети. Найдя таблицы, найти значение синуса нужного угла не составит труда.
3
Третий вариант - оптимальный. Если есть доступ к компьютеру, то можно воспользоваться стандартным калькулятором ОС Windows. Его следует переключить в расширенный режим. Для этого в разделе «Вид» меню выберите пункт «Инженерный». Вид калькулятора изменится - в нем появятся, в частности, кнопки для вычисления тригонометрических функций.Теперь введите значение угла, синус которого вам требуется вычислить. Можно сделать это как с клавиатуры, так и щелкая курсором мыши нужные клавиши калькулятора. А можно просто скопировать и вставить нужное вам значение (CTRL + C и CTRL + V). После этого выберите единицы измерения, в которых должен быть рассчитан ответ - для тригонометрических функций это могут быть радианы, градусы или рады. Делается это выбором одного из трех значений переключателя, расположенного ниже поля ввода вычисляемого значения. Теперь, нажав кнопку с надписью "sin", получите ответ на свой вопрос.
4
Четвертый вариант - самый современный. В эру интернета в сети существуют ресурсы, предлагающие решить чуть ли не каждую возникающую в жизни проблему. Он-лайн калькуляторы тригонометрических функций с удобным интерфейсом, более продвинутыми функциональными возможностями найти совсем не сложно. Лучшие из них предлагают вычислить не только значения отдельной функции, но и достаточно сложных выражений из нескольких функций.

Совет 3: Как найти синус угла между векторами

Вектор в многомерном евклидовом пространстве задается координатами своей начальной точки и точки, определяющей его величину и направление. Различие между направлениями двух таких векторов определяется величиной угла. Часто в разного рода задачах из области физики и математики предлагается найти не сам этот угол, а величину производной от него тригонометрической функции - синуса.
Инструкция
1
Используйте для определения синуса угла между двумя векторами известные формулы скалярного умножения векторов. Таких формул существует, как минимум, две. В одной из них в качестве переменной задействован косинус нужного угла, узнав который вы сможете вычислить и синус.
2
Составьте равенство и вычлените из него косинус. По одной формуле скалярное произведение векторов равно их длинам, перемноженным друг на дружку и на косинус угла, а по другой - сумме произведений координат вдоль каждой из осей. Приравняв обе формулы можно сделать вывод, что косинус угла должен быть равен отношению суммы произведений координат к произведению длин векторов.
3
Запишите полученное равенство. Для этого надо обозначить координаты обоих векторов. Допустим, они даны в трехмерной декартовой системе и их начальные точки перенесены в начало координатной сетки. Направление и величина первого вектора будет задана точкой (X₁,Y₁,Z₁), второго - (X₂,Y₂,Z₂), а угол обозначьте буквой γ. Тогда длины каждого из векторов можно высчитать, например, по теореме Пифагора для треугольников, образуемых их проекциями на каждую из координатных осей: √(X₁² + Y₁² + Z₁²) и √(X₂² + Y₂² + Z₂²). Подставьте эти выражения в сформулированную на предыдущем шаге формулу и вы получите такое равенство: cos(γ) = (X₁*X₂ + Y₁*Y₂ + Z₁*Z₂) / (√(X₁² + Y₁² + Z₁²) * √( X₂² + Y₂² + Z₂²)).
4
Используйте тот факт, что сумма возведенных в квадрат значений синуса и косинуса от угла одной величины всегда дает единицу. Значит, возведя полученное на предыдущем шаге выражение для косинуса в квадрат и отняв от единицы, а затем найди квадратный корень, вы решите задачу. Запишите нужную формулу в общем виде: sin(γ) = √(1-cos(γ)²) = √(1 - ((X₁*X₂ + Y₁*Y₂ + Z₁*Z₂) / (√(X₁² + Y₁² + Z₁²) * √( X₂² + Y₂² + Z₂²))²) = √(1 - ((X₁*X₂ + Y₁*Y₂ + Z₁*Z₂)² / ((X₁² + Y₁² + Z₁²) * ( X₂² + Y₂² + Z₂²))).
Видео по теме

Совет 4: Как найти косинус внешнего угла

Любой плоский угол можно достроить до развернутого, если продлить за вершину одну из его сторон. При этом другая сторона будет делить развернутый угол на два. Угол, образуемый второй стороной и продолжением первой, называется смежным, а когда речь идет о многоугольниках, его называют еще и внешним. Тот факт, что сумма внешнего и внутреннего углов по определению равна величине развернутого угла, позволяет вычислять тригонометрические функции по известным соотношениям параметров многоугольников.
Инструкция
1
Зная результат вычисления косинуса внутреннего угла (α) вы будете знать модуль косинуса внешнего (α₀). Единственная операция, которую вам нужно произвести с этой величиной - изменить ее знак, то есть умножить на -1: cos(α₀) = -1*cos(α).
2
Если известна величина внутреннего угла (α), для вычисления косинуса внешнего (α₀) можно использовать способ, описанный в предыдущем шаге - найти его косинус, а затем поменять знак. Но можно сделать и по-другому - сразу вычислить косинус внешнего угла, отняв для этого величину внутреннего от 180°: cos(α₀) = cos(180°-α). Если величина внутреннего угла приведена в радианах, формулу нужно преобразовать к такому виду: cos(α₀) = cos(π-α).
3
В правильном многоугольнике для вычисления величины внешнего угла (α₀) не нужно знать никаких параметров, кроме количества вершин (n) этой фигуры. На это число разделите 360° и найдите косинус полученного числа: cos(α₀) = cos(360°/n). Для вычислений в радианах на число вершин надо делить удвоенное число Пи, а формула должна приобрести такой вид: cos(α₀) = cos(2*π/n).
4
В прямоугольном треугольнике косинус внешнего угла при вершине, лежащей напротив гипотенузы, всегда равен нулю. Для двух других вершин эту величину можно рассчитать, зная длины гипотенузы (c) и катета (a), которые образуют эту вершину. Никаких тригонометрических функций при этом вычислять не требуется, просто разделите длину меньшей стороны на длину большей и поменяйте знак результата: cos(α₀) = -a/c.
5
Если известны длины двух катетов (a и b), тоже можно обойтись в расчетах без тригонометрических функций, но формула будет несколько сложней. Дробь, в знаменателе которой стоит длина стороны, примыкающей к вершине внешнего угла, а в числителе - длина другого катета, определяет тангенс внутреннего угла. Зная тангенс можно вычислить косинус внутреннего угла: √(1/(1+a²/b²). Этим выражением замените косинус в правой части формулы из первого шага: cos(α₀) = -1*√(1/(1+a²/b²).
Источники:
  • найти sin угла
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше