Совет 1: Как найти периметр и площадь треугольника

Казалось бы, что может быть проще, чем вычисление площади и периметра треугольника – измерил стороны, поставил цифры в формулу – и все. Если вы так считаете, значит, забыли, что для этих целей существует не две простенькие формулы, а гораздо больше – для каждого вида треугольника – своя.
Как найти периметр и площадь треугольника
Инструкция
1
Периметр треугольника равняется сумме длин всех трех его сторон. Он вычисляется по формуле P=a+b+c, в которой a, b и c – это стороны фигуры.
2
Одна из самых известных формул нахождения площади треугольника – это формула Герона. Она выглядит следующим образом: S=√p(p-a)(p-b)(p-c). Символ p обозначает полупериметр, для его нахождения разделите периметр треугольника на два.
3
Чтобы найти площадь треугольника, если вам известна длина одной из сторон и длина высоты, опущенной на эту сторону, умножьте эти показатели, а результат разделите на два.
4
Если перед вами равносторонний треугольник, то чтобы узнать площадь, возведите длину его стороны во вторую степень. Затем умножьте полученную цифру на корень квадратный из трех. Данную цифру разделите на четыре.
5
Чтобы найти площадь прямоугольного треугольника, измерьте длины его катетов (сторон, прилежащих к прямому углу). Умножьте эти значения, а результат разделите на два.
Видео по теме
Обратите внимание
Формула Герона - универсальная для нахождения площади треугольника.
Полезный совет
Периметр треугольника находится суммой всех сторон. Для нахождения площади существует несколько разных формул.
Источники:
  • Как найти периметр и площадь треугольника
  • найти площадь треугольника 4 класс
  • Периметр равностороннего треугольника равен 18 900 мм

Совет 2: Как вычислить площадь и периметр треугольника

Треугольник составляют три стороны, суммарная длина которых называется периметром. Замкнутую ломаную линию, образованную сторонами этой фигуры, тоже называют периметром. Она ограничивает участок поверхности определенной площади. Длины сторон, периметр, площадь, а также углы в вершинах - все это связано между собой определенными соотношениями. Использование этих соотношений позволит вычислить недостающие параметры фигуры, например, ее периметр и площадь.
Как вычислить площадь и периметр треугольника
Инструкция
1
Если длины каждой из сторон приведены в условиях задачи или у вас есть возможность самостоятельно измерить их, вычислить длину периметра будет очень просто - сложите размеры трех сторон.
2
При наличии в исходных условиях информации лишь о двух сторонах (А и В), а также о величине угла между ними (γ), начните вычисление периметра (Р) с нахождения длины недостающей стороны. Сделайте это с применением теоремы косинусов. Сначала возведите в квадрат длины известных сторон и сложите результаты. Затем отнимите от полученной величины произведение длин этих же сторон друг на друга и косинус известного угла. В общем виде формулу расчета неизвестной стороны можно записать так: √(A²+B²-A*B*cos(γ)). К полученной этим способом длине третьей стороны прибавьте известные из условий длины двух других и рассчитайте периметр: Р = √(A²+B²-A*B*cos(γ)) + А + В.
3
Узнав в процессе вычисления периметра или из условий задачи длины всех сторон фигуры (А, В и С), можно приступать к вычислению ее площади (S). Эти параметры - площадь и длины сторон - связывает между собой формула Герона. Поскольку на предыдущем шаге вы уже получили формулу расчета периметра, найдите его численное значение и используйте полученную величину для упрощения формулы. Поделите периметр пополам и присвойте это значение дополнительной переменной, обозначив ее буквой p. Затем найдите разности между полупериметром и длиной каждой из сторон - всего должно получиться три значения. Эти величины перемножьте между собой и умножьте на полупериметр, а затем извлеките из рассчитанного значения квадратный корень: S=√(p∗(p-A)∗(p-B)∗(p-C)).
4
Можно использовать более простую формулу вычисления площади (S), если к полученным на предыдущих шагах длинам сторон (А, В, С) добавить радиус (R) описанной около треугольника окружности. Составьте эту формулу из произведения длин всех трех сторон, добавив к нему операцию деления на учетверенный радиус. Получиться у вас должно такое тождество: S=A∗B∗C/(4∗R).

Совет 3: Как найти площадь треугольника

Нахождение объема треугольника действительно нетривиальная задача. Дело в том, что треугольник - двухмерная фигура, т.е. он целиком лежит в одной плоскости, а это значит, что у него попросту нет объема. Разумеется нельзя найти то, чего не существует. Но не будем опускать руки! Можно принять следующее допущение - объем двухмерной фигуры, это ее площадь. Площадь треугольника мы и будем искать.
Как найти площадь треугольника
Вам понадобится
  • лист бумаги, карандаш, линейка, калькулятор
Инструкция
1
Начертите на листе бумаги произвольный треугольник при помощи линейки и карандаша. Внимательно рассмотрев треугольник, вы сможете убедиться, что у него действительно нет объема, так как он нарисован на плоскости. Подпишите стороны треугольника: пусть одна сторона будет стороной "а", другая - стороной "b", и третья - стороной "c". Подпишите вершины треугольника буквами "А", "B" и "C".
2
Измерьте линейкой любую сторону треугольника и запишите получившийся результат. После этого восстановите перпендикуляр к измеренной стороне из противоположной ей вершины, такой перпендикуляр будет являться высотой треугольника. В случае, представленном на рисунке, перпендикуляр "h" восстановлен к стороне "c" из вершины "A". Измерьте получившуюся высоту линейкой и запишите результат измерения.
3
Подсчитайте площадь треугольника, используя следующую формулу: длину стороны "c" умножьте на высоту "h" и разделите получившееся значение на 2.
4
Может случиться, что вам будет сложно восстановить точный перпендикуляр. В этом случае вам следует воспользоваться другой формулой. Измерьте все стороны треугольника линейкой. После этого подсчитайте полупериметр треугольника "p", сложив получившиеся длины сторон и разделив их сумму пополам. Имея в своем распоряжении значение полупериметра, вы можете рассчитать площадь треугольника по формуле Герона. Для этого необходимо извлечь квадратный корень из следующего выражения: p(p-a)(p-b)(p-c).
5
Вы получили искомую величину площади треугольника. Задача нахождения объема треугольника не решена, но как говорилось выше, объема у треугольника не существует. Вы можете найти объем пирамиды, которая по сути является треугольником в трехмерном мире. Если представить, что наш первоначальный треугольник стал трехмерной пирамидой, то объем такой пирамиды будет равен произведению длины ее основания на полученную нами площадь треугольника.
Обратите внимание
Подсчеты будут тем точнее, чем тщательнее вы будете производить измерения
Источники:
  • Калькулятор “Все во все” - портал по справочным величинам
  • объем треугольника в 2018

Совет 4: Как найти периметр сторон треугольника

Треугольник имеет 3 стороны. Сумма длин этих сторон и называется периметром. Найти этот показатель можно и не имея всех данных на руках. Достаточно выучить несложные правила.
Как найти периметр сторон треугольника
Вам понадобится
  • - Ручка;
  • - лист бумаги;
  • - линейка;
  • - карандаш.
Инструкция
1
Стандартная формула нахождения периметра выглядит так: Р = a + b + c. В этой формуле а, b, c являются длинами каждой стороны треугольника. Эта формула может быть применена к любому виду треугольников.
2
Например, если у вас имеется треугольник и его стороны равны 6 см, 4 см и 10 см, то периметр будет вычисляться так: P=6+4+10=20 см. Вместо этих величин, можно поставить длины сторон, данные в вашей задаче.
3
Если же у вас имеется прямоугольный треугольник и вы знаете только величины двух сторон, то это не становится большой проблемой, чтобы найти периметр. Достаточно вспомнить теорему Пифагора, в которой говорится о том, что сумма квадратов сторон, прилегающих к углу 90 градусов, будет равна квадрату стороны противолежащей прямому углу. Прилегающие стороны называются катетами, а противолежащая — гипотенуза. Гипотенуза будет также и самой длинной стороной прямоугольного треугольника. Благодаря этой формуле можно найти любую неизвестную сторону и потом уже вставить данные и вычислить периметр треугольника.
4
Например, у вас дан треугольник, катеты которого равны 3 и 4 см. Тогда получается, что третья сторона будет равна корню из 25. Соответственно гипотенуза такого треугольника будет равна 5 см, а периметр равен 12 см.
5
Если в задаче даны длины двух сторон и угла между ними и нужно найти периметр, но треугольник не является прямоугольным, то на помощь приходит теорема косинусов. В ней говорится, что квадрат стороны будет равен сумме квадратов двух других сторон минус косинус угла, лежащего между известными сторонами, умноженного на 2. Как только третья сторона будет найдена, то с легкостью можно найти периметр по стандартной формуле.
6
Например, если стороны равны 4 и 5 см, а угол между ними равен 58 градусам, то третья сторона будет равна корню 16+25-2*0,529. Получается, неизвестная сторона равна корню из 39,942 и будет равна 6,31 см. А периметр такого треугольника будет равен 15,31 см.
Обратите внимание
Не забывайте указывать единицы измерения. Также важно, чтобы при внесении в формулу все величины были в одинаковых единицах измерения.
Полезный совет
Перед выполнением каждой геометрической задачи нарисуйте треугольник и отметьте все имеющиеся данные. Таким образом, станет наглядно понятно, каких данных не хватает для того, чтобы найти периметр треугольника.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500