Совет 1: Как найти периметр и площадь треугольника

Казалось бы, что может быть проще, чем вычисление площади и периметра треугольника – измерил стороны, поставил цифры в формулу – и все. Если вы так считаете, значит, забыли, что для этих целей существует не две простенькие формулы, а гораздо больше – для каждого вида треугольника – своя.
Инструкция
1
Периметр треугольника равняется сумме длин всех трех его сторон. Он вычисляется по формуле P=a+b+c, в которой a, b и c – это стороны фигуры.
2
Одна из самых известных формул нахождения площади треугольника – это формула Герона. Она выглядит следующим образом: S=√p(p-a)(p-b)(p-c). Символ p обозначает полупериметр, для его нахождения разделите периметр треугольника на два.
3
Чтобы найти площадь треугольника, если вам известна длина одной из сторон и длина высоты, опущенной на эту сторону, умножьте эти показатели, а результат разделите на два.
4
Если перед вами равносторонний треугольник, то чтобы узнать площадь, возведите длину его стороны во вторую степень. Затем умножьте полученную цифру на корень квадратный из трех. Данную цифру разделите на четыре.
5
Чтобы найти площадь прямоугольного треугольника, измерьте длины его катетов (сторон, прилежащих к прямому углу). Умножьте эти значения, а результат разделите на два.

Совет 2: Как вычислить площадь и периметр треугольника

Треугольник составляют три стороны, суммарная длина которых называется периметром. Замкнутую ломаную линию, образованную сторонами этой фигуры, тоже называют периметром. Она ограничивает участок поверхности определенной площади. Длины сторон, периметр, площадь, а также углы в вершинах - все это связано между собой определенными соотношениями. Использование этих соотношений позволит вычислить недостающие параметры фигуры, например, ее периметр и площадь.
Инструкция
1
Если длины каждой из сторон приведены в условиях задачи или у вас есть возможность самостоятельно измерить их, вычислить длину периметра будет очень просто - сложите размеры трех сторон.
2
При наличии в исходных условиях информации лишь о двух сторонах (А и В), а также о величине угла между ними (γ), начните вычисление периметра (Р) с нахождения длины недостающей стороны. Сделайте это с применением теоремы косинусов. Сначала возведите в квадрат длины известных сторон и сложите результаты. Затем отнимите от полученной величины произведение длин этих же сторон друг на друга и косинус известного угла. В общем виде формулу расчета неизвестной стороны можно записать так: √(A²+B²-A*B*cos(γ)). К полученной этим способом длине третьей стороны прибавьте известные из условий длины двух других и рассчитайте периметр: Р = √(A²+B²-A*B*cos(γ)) + А + В.
3
Узнав в процессе вычисления периметра или из условий задачи длины всех сторон фигуры (А, В и С), можно приступать к вычислению ее площади (S). Эти параметры - площадь и длины сторон - связывает между собой формула Герона. Поскольку на предыдущем шаге вы уже получили формулу расчета периметра, найдите его численное значение и используйте полученную величину для упрощения формулы. Поделите периметр пополам и присвойте это значение дополнительной переменной, обозначив ее буквой p. Затем найдите разности между полупериметром и длиной каждой из сторон - всего должно получиться три значения. Эти величины перемножьте между собой и умножьте на полупериметр, а затем извлеките из рассчитанного значения квадратный корень: S=√(p∗(p-A)∗(p-B)∗(p-C)).
4
Можно использовать более простую формулу вычисления площади (S), если к полученным на предыдущих шагах длинам сторон (А, В, С) добавить радиус (R) описанной около треугольника окружности. Составьте эту формулу из произведения длин всех трех сторон, добавив к нему операцию деления на учетверенный радиус. Получиться у вас должно такое тождество: S=A∗B∗C/(4∗R).

Совет 3: Как найти площадь, периметр

Для того чтобы найти площадь или периметр, не обязательно обладать большими познаниями в геометрии. Есть способы делать это и без расчетов, но методы, требующие знания формул и умения ими пользоваться, наиболее точны.
Инструкция
1
Если у вас есть фигура произвольной площади, для которой нужно определить площадь и периметр, и вы не можете использовать обычные формулы для расчетов, так как это не прямоугольник, круг или трапеция, а что-то сложнее по конфигурации, первым делом, разделите эту фигуру на части. Обычно многоугольники разделяют на треугольники, если у вашей заданной фигуры есть изогнутые линии в периметре, выделяйте треугольники и сегменты круга. Достройте сегменты до полного круга, чтобы иметь возможность измерить нужные значения.
Разделив всю фигуры на подобные элементы, посчитайте для каждого из них площадь. Площадь треугольника равняется половине прозведения одной из его сторон на высоту, опущенную к этой стороне. Измерьте линейкой для каждого треугольника нужные длины, подставьте значения в формулу и посчитайте площадь каждого треугольника. Если вы выделили кроме треугольников, как элементы, и сегменты круга, считайте их площадь по формуле π^2*а/360-S, где a – это центральный угол, два радиуса которого соединены между собой дугой сегмента; S – площадь треугольника, образованного теми же радиусами и прямой, которой можно спрямить дугу, соединив радиусы.
Когда вам известны все площади отдельных элементов суммируйте их, чтобы выяснить площадь нужной фигуры.
2
Чтобы узнать периметр, надо измерить все прямолинейные отрезки в нем и сложить их. Потом прибавить к полученному числу, вычисленные длины дуг. Длина дуги окружности вычисляется как произведение радиуса круга на угол а, уже упоминаемый выше.
3
Можно ограничиться минимумом расчетов, если использовать другие методы для определения площади. Так вы можете использовать палетку. Наложите палетку поверх фигуры, для которой определяете площадь, пересчитайте все единицы площади перекрывающие искомую площадь, а потом умножьте полученное число на известную площадь единицы измерения палетки.
4
Требует больше инструментов весовой метод определения площади. Если у вас есть точные весы, скопируйте изображение искомой площади на лист известного формата, взвесьте его. Теперь вырежьте изображение фигуры и измерьте его вес. Когда вам известна площадь и вес целого листа, а также вес его части, можно составить пропорцию и определить площадь этой части. Лучше этот метод использовать, если бумага фабричного производства.
5
А самый простой способ измерить периметр, проложить по всей линии периметра нить. Важно, чтобы нить точно совпадала с периметром. Когда нить замкнется, то есть сделает полный круг по линии периметра, отметьте точку на ней, в которой нитка соприкоснулась с местом начала отсчета. Отрежьте и измерьте полученную длину, значение вашего измерения - это и есть периметр данной фигуры.
Видео по теме
Источники:
  • как найти площадь круга и сегмента

Совет 4: Как найти периметр

Периметр – это сумма длин сторон какой-либо геометрической фигуры. Иными словами, если взять нить и выложить с ее помощью на столе, например, квадрат, а потом измерить длину этой нити, то полученная цифра и будет периметром данного квадрата. Все знают, что такое периметр, но не каждый может сразу сообразить, как его рассчитать.
Для измерения периметра разных фигур существуют различные способы.

Инструкция
1
Квадрат. Общеизвестно, что у квадрата есть 4 стороны и они равны. Поэтому формула для вычисления его периметра выглядит так:

P=4а,

где а – это длина одной стороны данной фигуры.

Проще говоря, измерьте одну из сторон квадрата и умножьте эту цифру на количество сторон, то есть на 4. В нашем случае периметр равен 16 см (4*4).
2
Прямоугольник и ромб. У этих двух фигур только параллельные друг другу стороны равны, соответственно периметр определяется следующим образом:

Р=2(а+b),

где а и b – соприкасающиеся стороны. Таким образом, на нашем примере периметр прямоугольника равен 24 см (2*(8+4)).
3
Треугольник. Поскольку треугольники бывают совершенно разными – равнобедренными, неправильными, с прямыми углами, то единственным верным способом определить периметр такой фигуры является формула:

Р=a+b+c.

То есть для вычисления периметра треугольника просто измерьте длины всех трех сторон и сложите полученные цифры. В нашем случае периметр треугольника равен 10,7 см (2+5+3,7).
4
Круг. Периметр круга называют длиной окружности, которая вычисляется по особой формуле:

Р=d*3,14,

где d – это диаметр окружности, а 3,14 – это число «пи», которое специально выведено учеными для определения периметра данной геометрической фигуры. Наш круг (см.рисунок) имеет в диаметре 3 см, то есть периметр окружности равен 9,42см (3*3,14).
Источники:
  • как находить длину окружности

Совет 5: Как найти по трем сторонам площадь треугольника

Поиск площади треугольника - одна из самых распространенных задач школьной планиметрии. Знания трех сторон треугольника достаточно для определения площади любого треугольника. В частных случаях равнобедренного и равностороннего треугольников достаточно знать длины двух и одной стороны соответственно.
Вам понадобится
  • длины сторон треугольников, формула Герона, теорема косинусов
Инструкция
1
Пусть задана треугольник ABC со сторонами AB = c, AC = b, BC = a. Площадь такого треугольника можно найти по формуле Герона.

Периметр треугольника P - это сумма длин его трех сторон: P = a+b+c. Обозначим его полупериметр за p. Он будет равен p = (a+b+c)/2.
2
Формула Герона для площади треугольника выглядит следующим образом: S = sqrt(p(p-a)(p-b)(p-c)). Если расписать полупериметр p, то получится: S = sqrt(((a+b+c)/2)((b+c-a)/2)((a+c-b)/2)((a+b-c)/2)) = (sqrt((a+b+c)(a+b-c)(a+c-b)(b+c-a)))/4.
3
Можно вывести формулу для площади треугольника и из других соображений, например, применив теорему косинусов.

По теореме косинусов AC^2 = (AB^2)+(BC^2)-2*AB*BC*cos(ABC). Используя введенные обозначения, эти выражения можно также записать в виде: b^2 = (a^2)+(c^2)-2a*c*cos(ABC). Отсюда, cos(ABC) = ((a^2)+(c^2)-(b^2))/(2*a*c)
4
Площадь треугольника находится также по формуле S = a*c*sin(ABC)/2 через две стороны и угол между ними. Синус угла ABC можно выразить через его косинус с помощью основного тригонометрического тождества: sin(ABC) = sqrt(1-((cos(ABC))^2). Подставляя синус в формулу для площади и расписывая его, можно прийти к формуле для площади треугольника ABC.
Видео по теме

Совет 6: Как узнать периметр треугольника

Периметр треугольника, как и любой другой плоской геометрической фигуры, составляет сумма длин ограничивающих его отрезков. Поэтому, чтобы вычислить длину периметра, надо знать длины его сторон. Но в силу того, что длины сторон в геометрических фигурах связаны определенными соотношениями с величинами углов, может оказаться достаточным знание лишь одной или двух сторон и оного или двух углов.
Инструкция
1
Сложите все длины сторон треугольника (A, B, C), если они известны - это самый простой из возможных способов нахождения длины периметра (P): P=A+B+C.
2
Если известны величины двух углов треугольника (β и γ) и длина стороны между ними (A), то, исходя из теоремы синусов, можно узнать длины двух других сторон. Каждая из них будет равна частному от операции деления, где делимым будет произведение длины известной стороны на синус угла между известной и искомой сторонами, а делителем - синус угла, равного разности между 180° и суммой двух известных углов. То есть, неизвестная сторона B будет вычисляться по формуле B=A∗sin(β)/sin(180°-α-β), а неизвестная сторона C - по формуле C=A∗sin(γ)/sin(180°-α-β). Тогда длину периметра (P) можно определить, сложив эти два выражения с длиной известной стороны A: P = A + A∗sin(β)/sin(180°-α-β) + A∗sin(γ)/sin(180°-α-β) = A∗(1 + sin(β)/sin(180°-α-β) + sin(γ)/sin(180°-α-β)).
3
Если треугольник - прямоугольный, то его периметр (P) можно вычислить, зная длины лишь двух сторон. Если известны длины обоих катетов (A и B), то длина гипотенузы, в соответствии с теоремой Пифагора, будет равна квадратному корню из суммы квадратов длин известных сторон. Если к этой величине прибавить сумму известных сторон, то станет известна и длина периметра: P=A+B+√(A²+B²).
4
Если в прямоугольном треугольнике известны длины гипотенузы (C) и одного из катетов (A), то из той же теоремы Пифагора длину недостающего катета можно определить, как квадратный корень из разницы квадратов длин гипотенузы и известного катета. К этой величине останется добавить длины известных сторон, чтобы вычислить периметр треугольника: P=A+C+√(C²-A²).
5
Если известна длина одного из катетов прямоугольного треугольника (A) и величина угла (α), лежащего напротив него, то этого достаточно, чтобы вычислить недостающие стороны и длину периметра (P): P=A∗(1/tg(α)+1/sin(α)+1).
6
Если кроме длины одного из катетов прямоугольного треугольника (A) известна величина прилежащего к нему острого угла (β), то и этого хватит для расчета периметра (P): P=A∗(1/сtg(β)+1/cos(β)+1).
7
Если известна величина одного из острых углов прямоугольного треугольника (α) и длина его гипотенузы (C), то периметр (P) можно высчитать по формуле: P=C∗(1+sin(α)+cos(α)).
Видео по теме

Совет 7: Как найти площадь треугольника

Нахождение объема треугольника действительно нетривиальная задача. Дело в том, что треугольник - двухмерная фигура, т.е. он целиком лежит в одной плоскости, а это значит, что у него попросту нет объема. Разумеется нельзя найти то, чего не существует. Но не будем опускать руки! Можно принять следующее допущение - объем двухмерной фигуры, это ее площадь. Площадь треугольника мы и будем искать.
Вам понадобится
  • лист бумаги, карандаш, линейка, калькулятор
Инструкция
1
Начертите на листе бумаги произвольный треугольник при помощи линейки и карандаша. Внимательно рассмотрев треугольник, вы сможете убедиться, что у него действительно нет объема, так как он нарисован на плоскости. Подпишите стороны треугольника: пусть одна сторона будет стороной "а", другая - стороной "b", и третья - стороной "c". Подпишите вершины треугольника буквами "А", "B" и "C".
2
Измерьте линейкой любую сторону треугольника и запишите получившийся результат. После этого восстановите перпендикуляр к измеренной стороне из противоположной ей вершины, такой перпендикуляр будет являться высотой треугольника. В случае, представленном на рисунке, перпендикуляр "h" восстановлен к стороне "c" из вершины "A". Измерьте получившуюся высоту линейкой и запишите результат измерения.
3
Подсчитайте площадь треугольника, используя следующую формулу: длину стороны "c" умножьте на высоту "h" и разделите получившееся значение на 2.
4
Может случиться, что вам будет сложно восстановить точный перпендикуляр. В этом случае вам следует воспользоваться другой формулой. Измерьте все стороны треугольника линейкой. После этого подсчитайте полупериметр треугольника "p", сложив получившиеся длины сторон и разделив их сумму пополам. Имея в своем распоряжении значение полупериметра, вы можете рассчитать площадь треугольника по формуле Герона. Для этого необходимо извлечь квадратный корень из следующего выражения: p(p-a)(p-b)(p-c).
5
Вы получили искомую величину площади треугольника. Задача нахождения объема треугольника не решена, но как говорилось выше, объема у треугольника не существует. Вы можете найти объем пирамиды, которая по сути является треугольником в трехмерном мире. Если представить, что наш первоначальный треугольник стал трехмерной пирамидой, то объем такой пирамиды будет равен произведению длины ее основания на полученную нами площадь треугольника.
Обратите внимание
Подсчеты будут тем точнее, чем тщательнее вы будете производить измерения
Источники:
  • Калькулятор “Все во все” - портал по справочным величинам, константам и их переводу.
  • объем треугольника

Совет 8: Как найти периметр равностороннего треугольника

Равносторонний треугольник наряду с квадратом является, пожалуй, самой простой и симметричной фигурой в планиметрии. Разумеется, все соотношения, справедливые для обычного треугольника, верны также и для равностороннего. Однако для правильного треугольника все формулы становятся намного проще.
Вам понадобится
  • калькулятор, линейка
Инструкция
1
Чтобы найти периметр равностороннего треугольника измерьте длину одной из его сторон и умножьте результат измерения на три. В виде формулы это правило можно записать следующим образом:

Прт = Дс * 3,

где:

Прт – периметр равностороннего треугольника,
Дс – длина любой из его сторон.

Периметр треугольника получится в тех же единицах измерения, что и длина его стороны.
2
Пример.
Длина стороны равностороннего треугольника равна 10 мм. Требуется определить его периметр.
Решение.
Прт = 10 * 3 = 30 (мм)
3
Так как равносторонний треугольник обладает высокой степенью симметрии, то для вычисления его периметра достаточно одного из параметров. Например, площади, высоты, радиуса вписанной или описанной окружности.
4
Если известен радиус вписанной окружности равностороннего треугольника, то для вычисления его периметра воспользуйтесь следующей формулой:

Прт = 6 * √3 * r,

где: r - радиус вписанной окружности.
Это правило следует из того, что радиус вписанной окружности равностороннего треугольника выражается через длину его стороны следующим соотношением:
r = √3/6 * Дс.
5
Чтобы вычислить периметр правильного треугольника через радиус описанной окружности, примените формулу:

Прт = 3 * √3 * R,

где: R - радиус описанной окружности.
Данная формула легко выводится из того факта, что радиус описанной окружности правильного треугольника выражается через длину его стороны следующим соотношением: R = √3/3 * Дс.
6
Для вычисления периметра равностороннего треугольника через известную площадь воспользуйтесь следующим соотношением:
Sрт = Дст² * √3 / 4,
где: Sрт – площадь равностороннего треугольника.
Отсюда можно вывести: Дст² = 4 * Sрт / √3, следовательно: Дст = 2 * √(Sрт / √3).
Подставляя это соотношение в формулу периметра через длину стороны равностороннего треугольника, получаем:

Прт = 3 * Дст = 3 * 2 * √(Sрт / √3) = 6 * √Sст / √(√3) = 6√Sст / 3^¼.
Видео по теме

Совет 9: Как найти периметр сторон треугольника

Треугольник имеет 3 стороны. Сумма длин этих сторон и называется периметром. Найти этот показатель можно и не имея всех данных на руках. Достаточно выучить несложные правила.
Вам понадобится
  • - Ручка;
  • - лист бумаги;
  • - линейка;
  • - карандаш.
Инструкция
1
Стандартная формула нахождения периметра выглядит так: Р = a + b + c. В этой формуле а, b, c являются длинами каждой стороны треугольника. Эта формула может быть применена к любому виду треугольников.
2
Например, если у вас имеется треугольник и его стороны равны 6 см, 4 см и 10 см, то периметр будет вычисляться так: P=6+4+10=20 см. Вместо этих величин, можно поставить длины сторон, данные в вашей задаче.
3
Если же у вас имеется прямоугольный треугольник и вы знаете только величины двух сторон, то это не становится большой проблемой, чтобы найти периметр. Достаточно вспомнить теорему Пифагора, в которой говорится о том, что сумма квадратов сторон, прилегающих к углу 90 градусов, будет равна квадрату стороны противолежащей прямому углу. Прилегающие стороны называются катетами, а противолежащая — гипотенуза. Гипотенуза будет также и самой длинной стороной прямоугольного треугольника. Благодаря этой формуле можно найти любую неизвестную сторону и потом уже вставить данные и вычислить периметр треугольника.
4
Например, у вас дан треугольник, катеты которого равны 3 и 4 см. Тогда получается, что третья сторона будет равна корню из 25. Соответственно гипотенуза такого треугольника будет равна 5 см, а периметр равен 12 см.
5
Если в задаче даны длины двух сторон и угла между ними и нужно найти периметр, но треугольник не является прямоугольным, то на помощь приходит теорема косинусов. В ней говорится, что квадрат стороны будет равен сумме квадратов двух других сторон минус косинус угла, лежащего между известными сторонами, умноженного на 2. Как только третья сторона будет найдена, то с легкостью можно найти периметр по стандартной формуле.
6
Например, если стороны равны 4 и 5 см, а угол между ними равен 58 градусам, то третья сторона будет равна корню 16+25-2*0,529. Получается, неизвестная сторона равна корню из 39,942 и будет равна 6,31 см. А периметр такого треугольника будет равен 15,31 см.
Обратите внимание
Не забывайте указывать единицы измерения. Также важно, чтобы при внесении в формулу все величины были в одинаковых единицах измерения.
Полезный совет
Перед выполнением каждой геометрической задачи нарисуйте треугольник и отметьте все имеющиеся данные. Таким образом, станет наглядно понятно, каких данных не хватает для того, чтобы найти периметр треугольника.
Видео по теме
Обратите внимание
Формула Герона - универсальная для нахождения площади треугольника.
Полезный совет
Периметр треугольника находится суммой всех сторон. Для нахождения площади существует несколько разных формул.
Источники:
  • Как найти периметр и площадь треугольника
  • найти площадь треугольника 4 класс
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500