Совет 1: пределы: как их посчитать

Значение любого выражения стремится к какому-либо пределу, величина которого является постоянной. Задачи на пределы весьма часто встречаются в курсе математического анализа. Их решение требует наличия ряда специфических знаний и навыков.
Инструкция
1
Пределом называется некоторое число, к которому стремится переменная переменная или значение выражения. Обычно переменные или функции стремятся либо к нулю, либо к бесконечности. При пределе, равном нулю, величина считается бесконечно малой. Иными словами, бесконечно малыми называются величины, которые переменны и приближаются к нулю. Если предел стремится к бесконечности, то его называют бесконечным пределом. Обычно он записывается в виде:
lim x=+∞.
2
У пределов есть ряд свойств, некоторые из которых представляют собой аксиомы. Ниже представлены основные из них.
- одна величина имеет только один предел;

- предел постоянной величины равен величине этой постоянной;

- предел суммы равен сумме пределов: lim(x+y)=lim x + lim y;

- предел произведения равен произведению пределов: lim(xy)=lim x * lim y

- постоянный множитель может быть вынесен за знак предела: lim(Cx) = C * lim x, где C=const;

- предел частного равен частному пределов: lim(x/y)=lim x / lim y.
3
В задачах с пределами встречаются как числовые выражения, так и производные этих выражений. Это может выглядеть, в частности, следующим образом:
lim xn=a (при n→∞).
Ниже представлен пример несложного предела:
lim 3n +1 /n+1

n→∞.
Для решения этого предела поделите все выражение на n единиц. Известно, что если единица делится на некоторую величину n→∞, то предел 1/n равен нулю. Справедливо и обратное: если n→0, то 1/0=∞. Поделив весь пример на n, запишите его в представленном ниже виде и получите ответ:
lim 3+1/n/1+1/n=3

n→∞.
4
При решении задач на пределы могут возникать результаты, которые называются неопределенностями. В таких случаях применяют правила Лопиталя. Для этого производят повторное дифференцирование функции, которое приведет пример в такую форму, в которой его можно было решить. Существуют два типа неопределенностей: 0/0 и ∞/∞. Пример c неопределенностью может выглядеть, в частности, следующим обращом:
lim 1-cosx/4x^2=(0/0)=lim sinx/8x=(0/0)=lim cosx/8=1/8

x→0.
5
Вторым видом неопределенности считается неопределенность вида ∞/∞. Она часто встречается, например, при решении логарифмов. Ниже показан пример предела логарифма:
lim lnx/sinx=(∞/∞)=lim1/x/cosx=0

x→ ∞.

Совет 2: Как посчитать предел

Пределом функции f(x) при x, стремящемся к некоторому числу a, называется такое число b, когда для каждого положительного числа ε можно указать положительное число δ, удовлетворяющее условию: если |x - a| < ε, то |f(x) - b| < δ. Задача вычисления предела часто встречается в математическом анализе.
Инструкция
1
Предел функции f(x) в точке a будем обозначать lim (f(x)), x → a.
2
Для любой функции, непрерывной в точке a, lim (f(x)), x → a = f(a).
3
Предел суммы функций при x → a равен сумме пределов этих функций при x → a, то есть lim (f(x) + g(x)), x → a = lim (f(x)), x → a + lim (g(x)), x → a.Например, lim (3x^2 + 8x), x → 2 равен lim (3x^2), x → 2 + lim (8x), x → 2 = 12 + 16 = 28.
4
Предел произведения функций при x → a равен произведению пределов этих функций при x → a, то есть lim (f(x)*g(x)), x → a = (lim (f(x)), x → a) * (lim (g(x)), x → a).Например, lim (sin(x)*cos(x)), x → 0 равен (lim (sin(x)), x → 0) * (lim (cos(x)), x → 0) = 0*1 = 0.
5
Аналогично, предел частного функций при x → a равен частному от деления их пределов, но только в том случае, если предел знаменателя не равен нулю: lim (f(x)/g(x)), x → a = (lim (f(x)), x → a) / (lim (g(x)), x → a), если lim (g(x)), x → a ≠ 0.Например, lim ((5x + 8)/(x - 2)), x → 4 равен (lim (5x + 8), x → 4) / (lim (x - 2), x → 4) = 28/2 = 14.
6
Если lim (f(x)), x → a = 0 и lim (g(x)), x → a = 0, то, вычисляя предел частного этих функций в точке a, вы сталкиваетесь с неопределенностью типа 0/0. Чтобы ее устранить, нужно постараться разложить числитель и знаменатель на множители и сократить те из них, которые обращаются в ноль при x = a.Например, пусть требуется найти lim ((x^2 - 9)/(x - 3)), x → 3. Упрощая дробь, вы получите (x^2 - 9)/(x - 3) = ((x - 3)*(x + 3))/(x - 3) = x + 3. Следовательно, искомый предел равен lim (x + 3), x → 3 = 6.
7
Если lim (f(x)), x → a = ±∞ и lim (g(x)), x → a = ±∞, то при вычислении предела частного этих функций в точке a вам придется устранить неопределенность типа ∞/∞. Это можно сделать, упростив выражение, как и в предыдущем случае. Другой способ раскрытия неопределенности состоит в том, чтобы разделить числитель и знаменатель на x в наибольшей степени, присутствующей в выражении, а после этого попытаться вычислить предел согласно приведенным выше правилам.
8
Если числитель и знаменатель частного f(x)/g(x) одновременно стремятся к нулю или бесконечности при x → a, то для раскрытия неопределенности можно воспользоваться правилом Лопиталя. Согласно этому правилу, предел частного функций в точке a равен пределу частного их производных в той же точке, то есть lim (f(x)/g(x)), x → a = lim (f′(x)/g′(x)), x → a.Например, пусть нужно вычислить lim (x^2/(x - 5)), x → ∞. Дифференцируя обе функции, вы получите (x^2)′/(x-5)′ = 2x/1 = 2x. Предел этой функции при x → ∞ равен ∞.
Видео по теме
Видео по теме
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500